National Repository of Grey Literature 9 records found  Search took 0.01 seconds. 
Studying the behavior of high strength concrete at high temperatures
Sovová, Kateřina ; Kirnbauer, tech Johannes (referee) ; Bodnárová, Lenka (advisor)
This master’s thesis is divided into two parts; practical and theoretical. The theoretical part of this study describes the influence of high temperature on concrete structure and chemical, mechanical and physical changes, which take place during the exposure to high temperatures. The thesis also evaluates spalling of concrete and the methods to prevent it, as well as the function of polypropylene and cellulose fibers in the concrete. The practical part deals with design, production and testing of the cement-based concrete with the use of different fibers (polypropylene fibers and cellulose fibers). The properties and the means of applications in high temperatures are also included. The practical part also assesses the influence of high temperature on strength, porosity, visual changes of specimens, changes of surface and degradation of testing specimens due to heat loads according to normative heat curve (ISO 834) and also according to hydrocarbon curve. For clearer arrangement, the experimental tests are divided into two parts and the measured values are evaluated at the end of each part. The conclusion resumes all data obtained by testing and evaluates what is the most suitable formulation. The approach for further research is also discussed.
Behavior of concrete at high temperatures
Dvořáková, Michaela ; Bruckner,, Dipl Heinrich (referee) ; Bodnárová, Lenka (advisor)
The aim of this diploma thesis is to focus on the resistance of concrete exposed to high temperatures especially with focus of resistance against explosive spalling as well as clarifying the mode of action of various types of polypropylene fibres. The theoretical part is an introduction to the issues of explosive spalling, its mechanisms and majority influencing factors. Further description of the processes taking place in the structure of concrete under extreme thermal load, distribution and size of pores in concrete, thermal load, temperature-time curves and their applications, methods of elimination of negative behaviour of concrete exposed to thermal loading (passive and active methods), mode of action of polypropylene fibres and more is also included in the theoretical part. The main aim of experimental part is to verify the function of polypropylene fibers of various Melt Flow Indexes (MFI) and dosage. Primarily, the test samples with content of the PP-fibers are compared to the reference sample without fibers. Secondarily, the samples with standard PP-fibers (with MFI 25) with dosage 2.0 kg/m3 are compared to samples with modified PP-fiber (with MFI 2500) of dosage 0.9 kg/m3. Photogrammetric images were used for evaluation and comparison of spalled surfaces and its depth. Determination of the softening temperature and melting point of the modified and standard PP-fibers was made by using a high temperature microscope video. The second part of the experimental work was to define concrete permeability at different temperatures and pressures. Permeability was measured at temperatures of 20°C, 90°C, 150°C, 175°C, 200°C, 225°C and 250°C and at pressure of 0.2, 0.4 and 0.6 MPa.
The concrete with a higher resistance to high temperatures
Mikulinec, David ; Hela,, Rudolf (referee) ; Bodnárová, Lenka (advisor)
The result of this master’s thesis is acquaintance with the issues of cement concrete resistance to high temperatures. This work describes the processes ongoing in the structure of concrete at extreme thermal loads and analysis of effects of high temperatures on the individual components of reinforced concrete structures is given, then influence of high temperatures and fire on the aggregates, matrix, reinforcement steel and the resulting changes in their properties. In the experimental part is given design of composition of concrete with a higher resistance to high temperatures and subsequent verification of the physico-mechanical properties of sample of concrete after exposure to temperatures at intervals of 200 ° C, 400 ° C, 600 ° C and 900 ° C. In individual recipes were observed changes of volume weight, changes of compressive strength and tensile strength flexural , tensile strength of surface layers and the occurrence of cracks and then were compared the results of thermally loaded and unloaded samples. The benefit in this issue is to evaluate the surface appearance of samples after heat load - study of area of crack and measurement of their width - was used according to the methodology's authors Xing, Hebert, Noumowe a Ledesert given in Cement and Concrete Research. This methodology allows to quantify changes of surface, after temperature load.
Studying the behavior of high strength concrete at high temperatures
Sovová, Kateřina ; Kirnbauer, tech Johannes (referee) ; Bodnárová, Lenka (advisor)
This master’s thesis is divided into two parts; practical and theoretical. The theoretical part of this study describes the influence of high temperature on concrete structure and chemical, mechanical and physical changes, which take place during the exposure to high temperatures. The thesis also evaluates spalling of concrete and the methods to prevent it, as well as the function of polypropylene and cellulose fibers in the concrete. The practical part deals with design, production and testing of the cement-based concrete with the use of different fibers (polypropylene fibers and cellulose fibers). The properties and the means of applications in high temperatures are also included. The practical part also assesses the influence of high temperature on strength, porosity, visual changes of specimens, changes of surface and degradation of testing specimens due to heat loads according to normative heat curve (ISO 834) and also according to hydrocarbon curve. For clearer arrangement, the experimental tests are divided into two parts and the measured values are evaluated at the end of each part. The conclusion resumes all data obtained by testing and evaluates what is the most suitable formulation. The approach for further research is also discussed.
Study of the properties of cement concrete at high temperatures
Žák, Michal ; Sitek,, Libor (referee) ; Bodnárová, Lenka (advisor)
This diploma thesis is focused on behavior of cement concrete at high temperatures. The theoretical part describes processes, which take place in concrete at thermal loading and effect of this thermal load to mechanical and physical properties of concrete. Also there was described recommendation for testing physical and mechanical of concrete at high temperatures according to RILEM TC. In experimental part mixes were made with greywacke aggregate, amphibolite aggregate and with the addition of polypropylene fibers or cellulose fibers. In these mixes was determined the effect of high temperatures on the density of concrete, compressive strength of concrete and thermal strain of concrete. Further there was tested addition of 2 kg/m3 polypropylene fibers to concrete with basalt aggregate and siliceous aggregate and influence of these fibers to density of concrete, compressive strength of concrete and dynamic modulus of elasticity.
Studying the behavior of concrete at high temperatures
Fiala, Jiří ; Sitek,, Libor (referee) ; Bodnárová, Lenka (advisor)
This thesis deals with the behavior of cement concrete at high temperature with a focus on the impact behavior of aggregate, cement type and polypropylene fiber reinforcement. The theoretical part describes the issue of cement concrete at high temperatures, especially processes in the cement matrix, aggregates and polypropylene fibers. Furthermore, theoretical part describes the selection of a suitable type of cement and aggregates in concrete exposed to high temperatures. In the experimental part was designed the concrete composition with various kinds different types of aggregates and two types of cements. The temperature stress of test samples was performed according to ISO standard temperature curve 834. Subsequently, was made the verification of the physic-mechanical properties such as changes in bulk density and compressive strength after heat load. Moreover, the surface appearance of samples after heat load was evaluated, especially the occurrence of samples, the crack width and explosive spalling. Mineralogical composition changes of prepared samples before and after heat load were observed via X-ray diffraction analysis. Finally, we made a photogrammetry on a test plates after heat load which defined the size of the area and depth of spalling concrete surface.
Behavior of concrete at high temperatures
Dvořáková, Michaela ; Bruckner,, Dipl Heinrich (referee) ; Bodnárová, Lenka (advisor)
The aim of this diploma thesis is to focus on the resistance of concrete exposed to high temperatures especially with focus of resistance against explosive spalling as well as clarifying the mode of action of various types of polypropylene fibres. The theoretical part is an introduction to the issues of explosive spalling, its mechanisms and majority influencing factors. Further description of the processes taking place in the structure of concrete under extreme thermal load, distribution and size of pores in concrete, thermal load, temperature-time curves and their applications, methods of elimination of negative behaviour of concrete exposed to thermal loading (passive and active methods), mode of action of polypropylene fibres and more is also included in the theoretical part. The main aim of experimental part is to verify the function of polypropylene fibers of various Melt Flow Indexes (MFI) and dosage. Primarily, the test samples with content of the PP-fibers are compared to the reference sample without fibers. Secondarily, the samples with standard PP-fibers (with MFI 25) with dosage 2.0 kg/m3 are compared to samples with modified PP-fiber (with MFI 2500) of dosage 0.9 kg/m3. Photogrammetric images were used for evaluation and comparison of spalled surfaces and its depth. Determination of the softening temperature and melting point of the modified and standard PP-fibers was made by using a high temperature microscope video. The second part of the experimental work was to define concrete permeability at different temperatures and pressures. Permeability was measured at temperatures of 20°C, 90°C, 150°C, 175°C, 200°C, 225°C and 250°C and at pressure of 0.2, 0.4 and 0.6 MPa.
The concrete with a higher resistance to high temperatures
Mikulinec, David ; Hela,, Rudolf (referee) ; Bodnárová, Lenka (advisor)
The result of this master’s thesis is acquaintance with the issues of cement concrete resistance to high temperatures. This work describes the processes ongoing in the structure of concrete at extreme thermal loads and analysis of effects of high temperatures on the individual components of reinforced concrete structures is given, then influence of high temperatures and fire on the aggregates, matrix, reinforcement steel and the resulting changes in their properties. In the experimental part is given design of composition of concrete with a higher resistance to high temperatures and subsequent verification of the physico-mechanical properties of sample of concrete after exposure to temperatures at intervals of 200 ° C, 400 ° C, 600 ° C and 900 ° C. In individual recipes were observed changes of volume weight, changes of compressive strength and tensile strength flexural , tensile strength of surface layers and the occurrence of cracks and then were compared the results of thermally loaded and unloaded samples. The benefit in this issue is to evaluate the surface appearance of samples after heat load - study of area of crack and measurement of their width - was used according to the methodology's authors Xing, Hebert, Noumowe a Ledesert given in Cement and Concrete Research. This methodology allows to quantify changes of surface, after temperature load.
Studying the behavior of concrete at high temperatures
Žák, Michal ; Sitek,, Libor (referee) ; Bodnárová, Lenka (advisor)
This bachelor's thesis is focused on behavior of concrete at high temperatures. The theoretical part describes processes, which take place in concrete at thermal loading and further there was described testing of concrete at high temperatures. Next there was described influence of high temperatures on each component of concrete and design of appropriate components for concrete exposed to high temperatures. In experimental part mixes was made with greywacke aggregate, amphibolite aggregate and with the addition of polypropylene fibers. In these mixes was determined the effect of high temperatures on the density of concrete, dynamic modulus of elasticity of concrete and compressive strength of concrete.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.