National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Device for automated testing of gas boiler controllers
Kuřímský, Lukáš ; Háze, Jiří (referee) ; Šteffan, Pavel (advisor)
This diploma thesis deals with the design and implementation of a computer-controlled device for testing gas boiler control units, especially in the development phase. The reason for creating a test facility is the inadequacy of older test systems and the automation of existing testing. The test device in development consists of individual different cards. Each of the cards inserted into the motherboard performs its function in the system. Each of the cards has a special functionality which simulates the real conditions of the developed product. The basis of most cards is a microcontroller with a Cortex-M core, which communicates with the connected computer using the MODBUS protocol on the RS-485 communication interface. All cards on the bus are connected in parallel and behaves as a SLAVE, while the computer behaves as a MASTER and requests data or sends commands to the cards. The cards represent status switches (switching sensors), resistance and analog temperature sensors, PWM inputs and outputs (for simulation of feedback pumps or flow meters with pulse output). The cards also include a flame simulator, which reliably simulates the electrical properties of the flame and at the same time acts as a fan simulator. The input of the control unit is taken care of by the input card, which is intended for digital detection of the voltage presence in the range of 5 to 230 V DC and AC. Simultaneously, a card for connecting the power supply at zero voltage and disconnecting at zero current is created to supply the tested device with alternating voltage. A schematic diagram was designed or simulated for each card, then the function was verified and on this basis the whole card was created, including the microcontroller firmware. The most suitable solution and function of each card is carefully described and evaluated. All the requirements of the assignment within the work were met and the whole test equipment was manufactured and verified in four versions. In the future, the device is ready for the implementation of an automatic flame simulator and other improvements of individual module cards.
Device for automated testing of gas boiler controllers
Kuřímský, Lukáš ; Háze, Jiří (referee) ; Šteffan, Pavel (advisor)
This diploma thesis deals with the design and implementation of a computer-controlled device for testing gas boiler control units, especially in the development phase. The reason for creating a test facility is the inadequacy of older test systems and the automation of existing testing. The test device in development consists of individual different cards. Each of the cards inserted into the motherboard performs its function in the system. Each of the cards has a special functionality which simulates the real conditions of the developed product. The basis of most cards is a microcontroller with a Cortex-M core, which communicates with the connected computer using the MODBUS protocol on the RS-485 communication interface. All cards on the bus are connected in parallel and behaves as a SLAVE, while the computer behaves as a MASTER and requests data or sends commands to the cards. The cards represent status switches (switching sensors), resistance and analog temperature sensors, PWM inputs and outputs (for simulation of feedback pumps or flow meters with pulse output). The cards also include a flame simulator, which reliably simulates the electrical properties of the flame and at the same time acts as a fan simulator. The input of the control unit is taken care of by the input card, which is intended for digital detection of the voltage presence in the range of 5 to 230 V DC and AC. Simultaneously, a card for connecting the power supply at zero voltage and disconnecting at zero current is created to supply the tested device with alternating voltage. A schematic diagram was designed or simulated for each card, then the function was verified and on this basis the whole card was created, including the microcontroller firmware. The most suitable solution and function of each card is carefully described and evaluated. All the requirements of the assignment within the work were met and the whole test equipment was manufactured and verified in four versions. In the future, the device is ready for the implementation of an automatic flame simulator and other improvements of individual module cards.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.