National Repository of Grey Literature 5 records found  Search took 0.00 seconds. 
Dynamic Tensile Test – Material Parameters Determination
Sismilich, Vladimír ; Hadraba, Hynek (referee) ; Severa, Martin (advisor)
The purpose of the work is to summarise todays existing methods of testing materials at high strain rates and techniques of evaluation acquired experimental data. There are shown the most important dynamic materials characteristics, by which is able to describe material behaviour at high strain rates. Dynamic tensile test on Eurofer’97 steel at loading rate 1m/s was conducted experimental data were analysed and evaluated. In the evaluation The most important strain and stress properties of this steel were determined.
Verification of the Exploitation Possibility of Tensile Strain during the Hopkinson´s Test
Dohnal, Ivo ; Spišák,, Emil (referee) ; Buchar, Jaroslav (referee) ; Forejt, Milan (advisor)
The PhD thesis deals with the possibility of performing dynamic tensile tests. For this purpose, Split Hopkinson Pressure Bar Test (hereinafter SHPBT) is used. The basic construction of SHPBT device is designed to perform dynamic compression tests on materials (metals, plastics, and ceramics). The obtained results are deformation stress – strain and strain rate – strain dependences. SHPBT is capable of testing materials at high strain rates up to 10^2 – 10^3 s-1. It was created a special device for dynamic tensile tests of materials at high strain rates. The created device uses the basic construction of SHPBT. The special device is used for testing flat specimens with 2 mm thickness. It was recognized by the Industrial Property Office of the Czech Republic as a utility model with number 23703. The specimens used for dynamic tensile testing were made of austenitic stainless steel (WNr. 1.4301) with 2 mm thickness. The verification of created device was carried out by numerical simulation. The numerical simulation was performed by ANSYS LS – Dyna software.
Verification of the Exploitation Possibility of Tensile Strain during the Hopkinson´s Test
Dohnal, Ivo ; Forejt, Milan (advisor)
The PhD thesis deals with the possibility of performing dynamic tensile tests. For this purpose, Split Hopkinson Pressure Bar Test (hereinafter SHPBT) is used. The basic construction of SHPBT device is designed to perform dynamic compression tests on materials (metals, plastics, and ceramics). The obtained results are deformation stress – strain and strain rate – strain dependences. SHPBT is capable of testing materials at high strain rates up to 10^2 – 10^3 s-1. It was created a special device for dynamic tensile tests of materials at high strain rates. The created device uses the basic construction of SHPBT. The special device is used for testing flat specimens with 2 mm thickness. It was recognized by the Industrial Property Office of the Czech Republic as a utility model with number 23703. The specimens used for dynamic tensile testing were made of austenitic stainless steel (WNr. 1.4301) with 2 mm thickness. The verification of created device was carried out by numerical simulation. The numerical simulation was performed by ANSYS LS – Dyna software.
Verification of the Exploitation Possibility of Tensile Strain during the Hopkinson´s Test
Dohnal, Ivo ; Spišák,, Emil (referee) ; Buchar, Jaroslav (referee) ; Forejt, Milan (advisor)
The PhD thesis deals with the possibility of performing dynamic tensile tests. For this purpose, Split Hopkinson Pressure Bar Test (hereinafter SHPBT) is used. The basic construction of SHPBT device is designed to perform dynamic compression tests on materials (metals, plastics, and ceramics). The obtained results are deformation stress – strain and strain rate – strain dependences. SHPBT is capable of testing materials at high strain rates up to 10^2 – 10^3 s-1. It was created a special device for dynamic tensile tests of materials at high strain rates. The created device uses the basic construction of SHPBT. The special device is used for testing flat specimens with 2 mm thickness. It was recognized by the Industrial Property Office of the Czech Republic as a utility model with number 23703. The specimens used for dynamic tensile testing were made of austenitic stainless steel (WNr. 1.4301) with 2 mm thickness. The verification of created device was carried out by numerical simulation. The numerical simulation was performed by ANSYS LS – Dyna software.
Dynamic Tensile Test – Material Parameters Determination
Sismilich, Vladimír ; Hadraba, Hynek (referee) ; Severa, Martin (advisor)
The purpose of the work is to summarise todays existing methods of testing materials at high strain rates and techniques of evaluation acquired experimental data. There are shown the most important dynamic materials characteristics, by which is able to describe material behaviour at high strain rates. Dynamic tensile test on Eurofer’97 steel at loading rate 1m/s was conducted experimental data were analysed and evaluated. In the evaluation The most important strain and stress properties of this steel were determined.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.