National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Experimental evaluation of the drag torque, drag force and Magnus force acting on a rotating prolate spheroid
Lukerchenko, Nikolay ; Keita, Ibrahima ; Kvurt, Y. ; Miles, Jiří
The drag torque, drag force and Magnus force acting on a spheroid rotating around its axis of symmetry and moving perpendicularly to this axis in initially quiescent water were studied using experimental data and numerical simulation. The prolate spheroid with ratio of the axes 4/3 was speeded up in special device, which ensured the required rotational and translational velocity in the given plane. A video system was used to record the spheroid motion in water. Using the video records the spheroid translational and angular velocities and trajectory of its center were determined and compared with the results of the numerical simulation. The dependences of the coefficients of the drag torque, drag force and Magnus force on the Reynolds number and dimensionless angular velocity were obtained.
Experimental investigation of drag force, Magnus force and drag torque acting on rough sphere moving in calm water
Lukerchenko, Nikolay ; Keita, Ibrahima ; Chára, Zdeněk ; Vlasák, Pavel
The paper describes the results of experiments with a rotating golf ball moving quasi-steadily in calm water. The motion of the ball was recorded on a digital video camera. The dimensionless drag force, Magnus force, and drag torque coefficients were determined from the comparison of the calculated translational and angular velocities and trajectory with experimental ones for the rough particle. The proper value of the correction coefficients were established from condition of the best fitting of the experimental trajectory by the calculated one.
Magnus and Drag Forces Acting on Golf Ball
Kharlamov, Alexander ; Chára, Zdeněk ; Vlasák, Pavel
The paper describes the results of experiments with a rotating golf ball moving quasi-steadily in calm water. The motion of the ball was recorded on a digital video camera. The Cartesian coordinates and the angle of rotation of the ball were determined from the records of motion. The dimensionless drag force coefficient, Magnus force coefficient and translational and rotational Reynolds numbers were calculated from the time series of the ball coordinates and the angle of rotation for each recorded frame. The calculated data were averaged over rectangular cells on experimental domain on the plane of translational and rotational Reynolds numbers, i.e. 1.2 104 < Re < 1.6 104 and 3.8 103 < Reω < 2.7 104. The coefficients were presented in tabulated form.
Výzkum odporové síly a točivého momentu rotující koule pohybující se v klidné vodě
Kharlamov, Alexander ; Kvurt, Y. ; Chára, Zdeněk ; Vlasák, Pavel
The paper describes results of experiments with rotating spherical particles moving quasi-steadily in the calm water. The motion of the particles was recorded by a digital video camera. The Cartesian coordinates and the angle of rotation of the particles were determined from the record of the particles motion. The dimensionless drag coefficient, drag moment coefficient and translational and rotational Reynolds numbers were calculated from the time series of the particles coordinates and angle of rotation for each recorded frame. The effect of the particles translational motion on the drag moment and the effect of the particles rotation on the drag force were evaluated from the experimental data.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.