National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Spectral and transport properties of correlated electrons in disordered alloys
Pokorný, Vladislav ; Janiš, Václav (advisor) ; Velický, Bedřich (referee) ; Markoš, Peter (referee)
We develop methods how to calculate charge transport in disordered systems applicable in all disorder regimes. They allow to calculate vertex corrections to the electrical conductivity and the diffusion coefficient in models of elastically scattered electrons in the presence of random scatterers. These methods are based on an asymptotic limit to high spatial dimensions. The resulting formulas lead to reliable results free of unphysical behavior, as illustrated on a gallery of numerical examples.
Superconductivity in disordered systems
Šopík, Břetislav ; Lipavský, Pavel (advisor) ; Novotný, Tomáš (referee) ; Munzar, Dominik (referee)
Author: Mgr. Břetislav Šopík Thesis advisor: doc. Pavel Lipavský, CSc. Ph.D. thesis Superconductivity in disordered systems Abstract We study some aspects of the superconductivity in disordered systems - namely the superconductivity in a boron-doped diamond. We also apply theoretical methods originally developed in the field of the disordered systems to the theory of superconductivity. In the case of the boron-doped diamond we focus on the question of the dependence of the critical temperature Tc on boron doping. We discuss the impact of the boron distribution correlations on the Tc as well. First, we evaluate the density of states at the Fermi energy N0 within the dynamical cluster approximation. We discuss the Tc as a function of N0 within the BCS, the McMillan and the Belitz theory. In the case of 100 samples, the simplified Belitz theory gives the best agreement with experimental data. For 111 samples the McMillan theory is sufficient. We also show that the difference of 100 and 111 samples in the N0 dependence of Tc can be explained as given by attractive correlations in the boron distribution. Applying the concept of the coherent potential approximation, we re- move a self-interaction from the Galitskii-Feynman T-matrix approxima- tion. This correction has no effect in the normal state but makes the...
Spectral and transport properties of correlated electrons in disordered alloys
Pokorný, Vladislav ; Janiš, Václav (advisor) ; Velický, Bedřich (referee) ; Markoš, Peter (referee)
We develop methods how to calculate charge transport in disordered systems applicable in all disorder regimes. They allow to calculate vertex corrections to the electrical conductivity and the diffusion coefficient in models of elastically scattered electrons in the presence of random scatterers. These methods are based on an asymptotic limit to high spatial dimensions. The resulting formulas lead to reliable results free of unphysical behavior, as illustrated on a gallery of numerical examples.
Superconductivity in disordered systems
Šopík, Břetislav ; Lipavský, Pavel (advisor) ; Novotný, Tomáš (referee) ; Munzar, Dominik (referee)
Author: Mgr. Břetislav Šopík Thesis advisor: doc. Pavel Lipavský, CSc. Ph.D. thesis Superconductivity in disordered systems Abstract We study some aspects of the superconductivity in disordered systems - namely the superconductivity in a boron-doped diamond. We also apply theoretical methods originally developed in the field of the disordered systems to the theory of superconductivity. In the case of the boron-doped diamond we focus on the question of the dependence of the critical temperature Tc on boron doping. We discuss the impact of the boron distribution correlations on the Tc as well. First, we evaluate the density of states at the Fermi energy N0 within the dynamical cluster approximation. We discuss the Tc as a function of N0 within the BCS, the McMillan and the Belitz theory. In the case of 100 samples, the simplified Belitz theory gives the best agreement with experimental data. For 111 samples the McMillan theory is sufficient. We also show that the difference of 100 and 111 samples in the N0 dependence of Tc can be explained as given by attractive correlations in the boron distribution. Applying the concept of the coherent potential approximation, we re- move a self-interaction from the Galitskii-Feynman T-matrix approxima- tion. This correction has no effect in the normal state but makes the...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.