National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Těžké tautologie
Pich, Ján ; Krajíček, Jan (advisor) ; Pudlák, Pavel (referee)
We investigate the unprovability of NP$\not\subseteq$P/poly in various fragments of arithmetic. The unprovability is usually obtained by showing hardness of propositional formulas encoding superpolynomial circuit lower bounds. Firstly, we discuss few relevant techniques and known theorems. Namely, natural proofs, feasible interpolation, KPT theorem, iterability, gadget generators etc. Then we prove some original results. We show the unprovability of superpolynomial circuit lower bounds for systems admitting certain forms of feasible interpolation (modulo a hardness assumption) and for systems roughly described as tree-like Frege systems working with formulas using only a small fraction of variables of the statement that is supposed to be proved. These results are obtained by proving the hardness of the Nisan-Wigderson generators in corresponding proof systems.
Graph communication protocols
Folwarczný, Lukáš ; Pudlák, Pavel (advisor) ; Sgall, Jiří (referee)
Graph communication protocols are a generalization of classical communi- cation protocols to the case when the underlying graph is a directed acyclic graph. Motivated by potential applications in proof complexity, we study variants of graph communication protocols and relations between them. The main result is a comparison of the strength of two types of protocols, protocols with equality and protocols with a conjunction of a constant num- ber of inequalities. We prove that protocols of the first type are at least as strong as protocols of the second type in the following sense: For a Boolean function f, if there is a protocol with a conjunction of a constant number of inequalities of polynomial size solving f, then there is a protocol with equality of polynomial size solving f. We also introduce two new types of graph communication protocols, protocols with disjointness and protocols with non-disjointness, and prove that the first type is at least as strong as the previously considered protocols and that the second type is too strong to be useful for applications.
Complexity theory in Feasible Mathematics
Pich, Ján ; Krajíček, Jan (advisor) ; Pudlák, Pavel (referee) ; Buss, Samuel (referee)
Title: Complexity Theory in Feasible Mathematics Author: Ján Pich Department: Department of Algebra Supervisor: Prof. RNDr. Jan Krajíček, DrSc., MAE Abstract: We study the provability of statements and conjectures from Complex- ity Theory in Bounded Arithmetic. First, modulo a hardness assumption, we show that theories weaker in terms of provably total functions than Buss's theory S1 2 cannot prove nk -size circuit lower bounds for SAT formalized as a Σb 2-formula LB(SAT, nk ). In particular, the true universal first-order theory in the language containing names for all uniform NC1 algorithms denoted TNC1 does not prove LB(SAT, n4kc ) where k ≥ 1, c ≥ 2 unless each function f ∈ SIZE(nk ) can be approximated by formulas Fn of subexponential size 2O(n1/c) with subexponential advantage: Px∈{0,1}n [Fn(x) = f(x)] ≥ 1/2 + 1/2O(n1/c) . Unconditionally, V 0 does not prove quasipolynomial nlog n -size circuit lower bounds for SAT. Considering upper bounds, we prove the PCP theorem in Cook's theory PV1. This includes a formalization of the (n, d, λ)-graphs in PV1. A consequence of the result is that Extended Frege proof system admits p-size proofs of tautologies encoding the PCP theorem. Keywords: Circuit Lower Bounds, Bounded Arithmetic, The PCP theorem
Těžké tautologie
Pich, Ján ; Krajíček, Jan (advisor) ; Pudlák, Pavel (referee)
We investigate the unprovability of NP$\not\subseteq$P/poly in various fragments of arithmetic. The unprovability is usually obtained by showing hardness of propositional formulas encoding superpolynomial circuit lower bounds. Firstly, we discuss few relevant techniques and known theorems. Namely, natural proofs, feasible interpolation, KPT theorem, iterability, gadget generators etc. Then we prove some original results. We show the unprovability of superpolynomial circuit lower bounds for systems admitting certain forms of feasible interpolation (modulo a hardness assumption) and for systems roughly described as tree-like Frege systems working with formulas using only a small fraction of variables of the statement that is supposed to be proved. These results are obtained by proving the hardness of the Nisan-Wigderson generators in corresponding proof systems.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.