National Repository of Grey Literature 1 records found  Search took 0.01 seconds. 
Segmentation of Electrocardiographic Signals Using Deep Learning Methods
Hejč, Jakub ; Černý, Martin (referee) ; Halámek, Josef (referee) ; Kolářová, Jana (advisor)
The thesis deals with deep learning methods for the segmentation of surface and intracardiac electrocardiographic recording with focus on atrial activity. The theoretical part introduces current segmentation aproaches of electrocardiographic signals. Issues related to the development of deep learning models in context of standard ECG databases were also discussed. We proposed a pipeling for processing multimodal electrophysiology data from interventional procedures in order to build reliable training datasets. A deep model for segmentation of intracardiac recordings based on a modified residual architecture was proposed. A series of experiments was conducted to evaluate the effect of both model and dataset properties on segmentation quality. The annotation methodology of recordings with atrial fibrillation proved to be a crucial factor. Properties of loss function and type of data augmentation were revealed as secondary important parameters. A novel P wave segmentation method for incomplete references was proposed in the thesis. The approach was inspired by the deep contrast learning. It was modified to distinguish local segments of signals at different levels of abstraction of the extracted feature maps. Results were analyzed using standard quality metrics and post-hoc visual analysis. In some cases, a statistical comparison of experiments for different settings was performed. The results of the work showed that it is possible to use intracardiac signals for embedding a vector representation of local atrial activation into deep models.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.