National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Software environment for data assimilation in radiation protection
Majer, Peter ; Šmídl, Václav (advisor) ; Hofman, Radek (referee)
In this work we apply data assimilation onto meteorological model WRF for local domain. We use bayesian statistics, namely Sequential Monte Carlo method combined with particle filtering. Only surface wind data are considered. An application written in Python programming language is also part of this work. This application forms interface with WRF, performs data assimilation and provides set of charts as output of data assimilation. In case of stable wind conditions, wind predictions of assimilated WRF are significantly closer to measured data than predictions of non-assimilated WRF. In this kind of conditions, this assimilated model can be used for more accurate short-term local weather predictions. Powered by TCPDF (www.tcpdf.org)
Software environment for data assimilation in radiation protection
Majer, Peter ; Šmídl, Václav (advisor) ; Hofman, Radek (referee)
In this work we apply data assimilation onto meteorological model WRF for local domain. We use bayesian statistics, namely Sequential Monte Carlo method combined with particle filtering. Only surface wind data are considered. An application written in Python programming language is also part of this work. This application forms interface with WRF, performs data assimilation and provides set of charts as output of data assimilation. In case of stable wind conditions, wind predictions of assimilated WRF are significantly closer to measured data than predictions of non-assimilated WRF. In this kind of conditions, this assimilated model can be used for more accurate short-term local weather predictions. Powered by TCPDF (www.tcpdf.org)

Interested in being notified about new results for this query?
Subscribe to the RSS feed.