National Repository of Grey Literature 2 records found  Search took 0.02 seconds. 
Genome size variation in microalgae and its evolutionary consequences
Čertnerová, Dora
Eukaryotic organisms exhibit tremendous variability in genome size with no apparent connection to their biological complexity. Although this variation is known to correlate with numerous phenotypic traits, its evolutionary consequences remain widely unknown. This particularly applies to microalgae, where the genome size estimation is often methodologically challenging. Yet, microalgae represent a promising model group to study genome size evolution owing to their lower body complexity, short generation time and large population sizes, the latter two allowing them to quickly respond to environmental challenges. The main aim of this thesis was to enhance our understanding of genome size variation in microalgae and its evolutionary consequences. To do so, together with my co-authors, I summarized the flow cytometry (FCM) protocols used for microalgae and microorganisms possessing small genomes and addressed their limitations resulting mainly from insufficient amounts of biomass, difficulties with nuclei extraction and prominent background noise due to presence of various pigments and secondary metabolites. Further, I provided best practice recommendations that include, among others, analysing young cultures, avoiding long-term cultivation, and testing different isolation buffers and nuclei isolation...
Genome size variation in microalgae and its evolutionary consequences
Čertnerová, Dora ; Škaloud, Pavel (advisor) ; Boenigk, Jens (referee) ; Bureš, Petr (referee)
Eukaryotic organisms exhibit tremendous variability in genome size with no apparent connection to their biological complexity. Although this variation is known to correlate with numerous phenotypic traits, its evolutionary consequences remain widely unknown. This particularly applies to microalgae, where the genome size estimation is often methodologically challenging. Yet, microalgae represent a promising model group to study genome size evolution owing to their lower body complexity, short generation time and large population sizes, the latter two allowing them to quickly respond to environmental challenges. The main aim of this thesis was to enhance our understanding of genome size variation in microalgae and its evolutionary consequences. To do so, together with my co-authors, I summarized the flow cytometry (FCM) protocols used for microalgae and microorganisms possessing small genomes and addressed their limitations resulting mainly from insufficient amounts of biomass, difficulties with nuclei extraction and prominent background noise due to presence of various pigments and secondary metabolites. Further, I provided best practice recommendations that include, among others, analysing young cultures, avoiding long-term cultivation, and testing different isolation buffers and nuclei isolation...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.