National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Development of effective code for earthquake dynamic source simulations
Premus, Jan ; Gallovič, František (advisor) ; Zahradník, Jiří (referee)
Title: Development of effective code for earthquake dynamic source simulations Author: Bc. Jan Premus Department: Department of Geophysics Supervisor: doc. RNDr. František Gallovič, Ph.D, Department of Geophysics Abstract: Dynamic rupture modeling coupled with strong motion data fitting offers an insight into physical mechanisms behind earthquake sources [Gallovic et al., 2019]. Running a large number of dynamic model simulations is required due to the nonlinearity of the inverse problem. The goal of this Thesis is a development of an efficient forward solver for the dynamic inversions. The fi- nite difference staggered grid code FD3D by Madariaga and Olsen [1998] served as a basis for the development, offering sufficient speed, but rather low accu- racy. Traction at split node implementation of the fault boundary condition and perfectly matched layers as the absorbing boundary condition were required to obtain desirable accuracy. In addition to the slip weakening friction law, fast ve- locity weakening friction law has been implemented, increasing the applicability of the code. We test the new code FD3D TSN using USGS/SCEC benchmarks TPV5 (slip-weakening friction) and TPV104 (fast rate weakening friction) [Harris et al., 2018], showing very good agreement with results calculated by advanced numerical...
Influence of velocity model uncertainty in earthquake source inversions
Halló, Miroslav ; Gallovič, František (advisor) ; Duputel, Zacharie (referee) ; Vavryčuk, Václav (referee)
Title: Influence of velocity model uncertainty in earthquake source inversions Author: Miroslav Halló Department: Department of Geophysics Supervisor: doc. RNDr. František Gallovič, Ph.D., Department of Geophysics Abstract: Earthquake ground motions originate from rupture processes on faults in Earth. Constraints on earthquake source models are important for better un- derstanding of earthquake physics and for assessment of seismic hazard. The source models are inferred from observed waveforms by inverse modeling, which is subject to uncertainty. For large tectonic earthquakes the major source of un- certainty is an imprecise knowledge of crustal velocity model. The research topic of this Thesis is the influence of the velocity model uncertainty on the inferred source models. We perform Monte-Carlo simulations of Green's functions (GFs) in randomly perturbed velocity models to reveal the effects of the imprecise veloc- ity model on the synthetic waveforms. Based on the knowledge gained, we derive closed-form formulas for approximate covariance functions to obtain fast and effective characterization of the GFs' uncertainty. We demonstrate that approxi- mate covariances capture correctly the GF variability as obtained by the Monte- Carlo simulations. The proposed approximate covariance functions are...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.