National Repository of Grey Literature 10 records found  Search took 0.00 seconds. 
Design and analysis of electronically reconfigurable filtering structures
Kříčka, Tomáš ; Dvořák, Jan (referee) ; Langhammer, Lukáš (advisor)
This bachelor thesis deals with the proposal of analog filters with the ability of the electronic reconfiguration. The main aim was to propose three fully electronically reconfigurable filters using different methods. The work focuses on the use of modern active elements that ensure the electronic reconfiguration. Specifically on operational transconductivity amplifiers, second-generation current conveyors and current amplifiers. The transfer functions are simulated in the Orcad PSpice software, at the ideal and behavioral level. Sensitivity and parasitic analysis is applied to the two proposed filtration structures. Both structures are made on printed circuit boards, which are measured and then their transfer functions are compared with the simulated functions.
Electronically reconfigurable frequency filters
Gajdoš, Adam ; Langhammer, Lukáš (referee) ; Jeřábek, Jan (advisor)
The aim of the thesis was design of reconnection-less and electronically reconfigurable filters of SISO type with non-traditional active elements. Adjustability of bandwidth or quality factor is also required. First part of the thesis deals with theoretical analysis of filters, their operation modes and design of frequency filters using Signal-flow graph method aswell. Last but not least, electronical reconfiguration of transfer function and parasitic analysis was discussed. Another part describes active elements used in the practical part of thesis. Behaviors and design of active elements using existing circuits (e.g. UCC,EL2082) are described and their transformation into the Signal-flow graph form too. In the practical part five reconnection-less and reconfigurable filters of SISO type was designed using SNAP program. Simulations were done using Orcad program with ideal and real simulation models of active elements. Last part deals with filter design in EAGLE and experimental measurement.
Design of frequency filters with non-traditional transconductance elements
Gajdoš, Adam ; Vrba, Kamil (referee) ; Jeřábek, Jan (advisor)
The aim of Bachelor’s thesis was to study, design and practically realize controllable frequency filters, working in the current mode, using non-traditional active elements, containing a combination of transconductance amplifiers with current conveyors. Thesis deals in the theoretical part with the basic division of frequency filters, operating modes of circuits and design method of signal flow graphs, which are used for design of the circuits in the practical part. The next section describes all the active elements that are used for circuits realization. In the practical part five circuits are designed with the element VDCC and one circuit with CCTA. Simulation is performed on all circuits using a previously defined model of the real UCC. Last part of thesis describes the design of the PCB and the results of experimental measurements for chosen circuit.
Design and implementation of behavioral block models of active elements
Lipčej, Martin ; Koton, Jaroslav (referee) ; Jeřábek, Jan (advisor)
Bachelor thesis is focused on electronically controlled modern active elements, their typical behavior and particularly on design of composite function blocks. General study of analog signal processing using active elements in current, or mixed mode is presented, including their ideal behavior. For selected basic active elements, in particular Operati- onal Transconductance Amplifier and Second-Generation Current Conveyor, were found suitable simulation models of commercially produced active elements with the aim of designing composite function blocks CCTA, VDTA and VDCC. The potential possibility of independent control of their parameters is also considered. The simulated circuits using behavioral models of real components are presented in the following chapters, including their manufacturer indicated properties and examples of parameter control. The thesis then presents the simulation results of all possible circuit variants of the three active function blocks. The main benefit of this project is the ge- neral introduction to current mode active elements, design of unconventional functional blocks using real components and the final evaluation of presented simulations, including comprarison with their theoretical behavior. The conclusion aims to summarize the most appropriate combination of components, including manufacturing of VDTA and VDCC.
Design and analysis of electronically reconfigurable filtering structures
Kříčka, Tomáš ; Dvořák, Jan (referee) ; Langhammer, Lukáš (advisor)
This bachelor thesis deals with the proposal of analog filters with the ability of the electronic reconfiguration. The main aim was to propose three fully electronically reconfigurable filters using different methods. The work focuses on the use of modern active elements that ensure the electronic reconfiguration. Specifically on operational transconductivity amplifiers, second-generation current conveyors and current amplifiers. The transfer functions are simulated in the Orcad PSpice software, at the ideal and behavioral level. Sensitivity and parasitic analysis is applied to the two proposed filtration structures. Both structures are made on printed circuit boards, which are measured and then their transfer functions are compared with the simulated functions.
Current-Mode Multifunctional Filter Utilizing Losses of Inductor Simulator
Kartci, Aslihan
In this paper, a simple configuration for simulating the inductance using voltage differencing current conveyor (VDCC) as an active element has been presented. The proposed inductance simulator circuit uses only one VDCC, one current amplifier (CA), and one grounded capacitor. The equivalent value of the realized simulator can be tuned electronically through the transconductance parameter and current gain of the VDCC and current gain through the CA. The proposed circuit behavior together with its application is demonstrated using PSPICE simulations with commercially active devices. Functionality of the proposed circuit is verified through its application in the second-order circuit. The circuit that behaves as a filter, has one input and standard three output responses such as low-pass filter (LPF), band-pass filter (BPF), and high-pass filter (HPF).
Design of frequency filters with non-traditional transconductance elements
Gajdoš, Adam ; Vrba, Kamil (referee) ; Jeřábek, Jan (advisor)
The aim of Bachelor’s thesis was to study, design and practically realize controllable frequency filters, working in the current mode, using non-traditional active elements, containing a combination of transconductance amplifiers with current conveyors. Thesis deals in the theoretical part with the basic division of frequency filters, operating modes of circuits and design method of signal flow graphs, which are used for design of the circuits in the practical part. The next section describes all the active elements that are used for circuits realization. In the practical part five circuits are designed with the element VDCC and one circuit with CCTA. Simulation is performed on all circuits using a previously defined model of the real UCC. Last part of thesis describes the design of the PCB and the results of experimental measurements for chosen circuit.
Design and implementation of behavioral block models of active elements
Lipčej, Martin ; Koton, Jaroslav (referee) ; Jeřábek, Jan (advisor)
Bachelor thesis is focused on electronically controlled modern active elements, their typical behavior and particularly on design of composite function blocks. General study of analog signal processing using active elements in current, or mixed mode is presented, including their ideal behavior. For selected basic active elements, in particular Operati- onal Transconductance Amplifier and Second-Generation Current Conveyor, were found suitable simulation models of commercially produced active elements with the aim of designing composite function blocks CCTA, VDTA and VDCC. The potential possibility of independent control of their parameters is also considered. The simulated circuits using behavioral models of real components are presented in the following chapters, including their manufacturer indicated properties and examples of parameter control. The thesis then presents the simulation results of all possible circuit variants of the three active function blocks. The main benefit of this project is the ge- neral introduction to current mode active elements, design of unconventional functional blocks using real components and the final evaluation of presented simulations, including comprarison with their theoretical behavior. The conclusion aims to summarize the most appropriate combination of components, including manufacturing of VDTA and VDCC.
Electronically reconfigurable frequency filters
Gajdoš, Adam ; Langhammer, Lukáš (referee) ; Jeřábek, Jan (advisor)
The aim of the thesis was design of reconnection-less and electronically reconfigurable filters of SISO type with non-traditional active elements. Adjustability of bandwidth or quality factor is also required. First part of the thesis deals with theoretical analysis of filters, their operation modes and design of frequency filters using Signal-flow graph method aswell. Last but not least, electronical reconfiguration of transfer function and parasitic analysis was discussed. Another part describes active elements used in the practical part of thesis. Behaviors and design of active elements using existing circuits (e.g. UCC,EL2082) are described and their transformation into the Signal-flow graph form too. In the practical part five reconnection-less and reconfigurable filters of SISO type was designed using SNAP program. Simulations were done using Orcad program with ideal and real simulation models of active elements. Last part deals with filter design in EAGLE and experimental measurement.
General Floating Element Simulator Employing VDCCs and Grounded Components
Kartci, A.
In this study, a new general floating element simulator circuit employing two voltage differencing current conveyors (VDCCs) and three passive components is proposed. Depending on the passive component selection the presented circuit can realize floating frequency dependent negative resistor (FDNR), floating inductor, floating capacitor, and floating resistor simulator circuits. The circuit does not require any component matching conditions. Moreover, the proposed FDNR, inductance, capacitor and resistor simulator can be tuned electronically by changing the biasing current of the VDCC or can be controlled through the grounded resistor(s) if voltage controlled resistor is considered. The proposed floating inductor or capacitor simulators are verified in voltage-mode 3rd-order elliptic low-pass filter circuit simulated via SPICE using 90 nm, level 7 PTM CMOS technology parameters.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.