National Repository of Grey Literature 3 records found  Search took 0.01 seconds. 
The secreted aspartic proteases of Candida parapsilosis.
Marečková, Lucie ; Dostál, Jiří (advisor) ; Novotný, Marian (referee)
Candida parapsilosis is an opportunistic fungal pathogen of humans causing a variety of infections. Immunocompromised individuals represent the most threatened group of patients. The increasing frequency of infections and occurrence of drug resistant strains are the main reasons for research focused on novel antimycotic compounds. Inhibition of secreted aspartic proteases (Sap) of pathogenic Candida spp. appears to be a potential target of therapeutic intervention. The genome of C. parapsilosis contains at least three genes coding for secreted aspartic proteases, denominated SAPP1-3. Protease Sapp1p has been well biochemically and structurally characterized, whereas Sapp2p and Sapp3p have been given less attention. The first part of the thesis is focused on structural analysis of Sapp1p complexes with selected peptidomimetic inhibitors binding to the active site of the enzyme. In addition, complex of the isoenzyme Sapp2p with the well-known secreted aspartate inhibitor Pepstatin A has been analyzed. The second part is related to the fact that C. parapsilosis belongs to the Candida spp. with the unique ability to translate standard leucine CUG codon mostly as serine. Even though it is a non-conservative substitution of hydrophobic amino acids for a hydrophilic one, this unique ability is maintained for more...
Candida parapsilosis secreted aspartic proteinases: processing and secretion
Vinterová, Zuzana ; Heidingsfeld, Olga (advisor) ; Hodek, Petr (referee) ; Szotáková, Barbora (referee)
Candida parapsilosis is an emerging human opportunistic pathogen causing a wide spectrum of potentially life-threatening infections in immunocompromised hosts. One of the most important virulence factors of Candida spp. is a production of secreted aspartic proteinases (Saps). Presented thesis is mainly focused on the study of secreted aspartic proteinase 1 (Sapp1p) of C. parapsilosis, its processing and secretion under variable conditions and by use of various experimental models. Sapp1p is secreted by C. parapsilosis cells into the extracellular space as a completely processed and fully active enzyme. Experiments studying the C. parapsilosis cell wall (CW) confirmed the prolonged presence of completely processed Sapp1p on the cell surface (CW- Sapp1p). Proteolytic activity assay performed with the intact cells showed that CW-Sapp1p is proteolytically active prior to its release into the extracellular space and is capable of substrate cleavage. Biotinylation experiments with consecutive MS analysis revealed that CW-Sapp1p biotinylation is incomplete but saturable process, leaving partially unlabelled molecules. The accessibility of individual lysine residues in the Sapp1p molecule varied, with exception of four residues that were labelled in all of our experiments performed. The final step of...
The secreted aspartic proteases of Candida parapsilosis.
Marečková, Lucie ; Dostál, Jiří (advisor) ; Novotný, Marian (referee)
Candida parapsilosis is an opportunistic fungal pathogen of humans causing a variety of infections. Immunocompromised individuals represent the most threatened group of patients. The increasing frequency of infections and occurrence of drug resistant strains are the main reasons for research focused on novel antimycotic compounds. Inhibition of secreted aspartic proteases (Sap) of pathogenic Candida spp. appears to be a potential target of therapeutic intervention. The genome of C. parapsilosis contains at least three genes coding for secreted aspartic proteases, denominated SAPP1-3. Protease Sapp1p has been well biochemically and structurally characterized, whereas Sapp2p and Sapp3p have been given less attention. The first part of the thesis is focused on structural analysis of Sapp1p complexes with selected peptidomimetic inhibitors binding to the active site of the enzyme. In addition, complex of the isoenzyme Sapp2p with the well-known secreted aspartate inhibitor Pepstatin A has been analyzed. The second part is related to the fact that C. parapsilosis belongs to the Candida spp. with the unique ability to translate standard leucine CUG codon mostly as serine. Even though it is a non-conservative substitution of hydrophobic amino acids for a hydrophilic one, this unique ability is maintained for more...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.