National Repository of Grey Literature 13 records found  1 - 10next  jump to record: Search took 0.01 seconds. 
The effect of 14-3-3 protein on intradomain interaction of ubiquitin ligase Nedd4-2
Pohl, Pavel ; Obšilová, Veronika (advisor) ; Žáková, Lenka (referee) ; Pavlíček, Jiří (referee)
EN The human ubiquitin ligase Nedd4-2 (NEDD4L) ubiquitinates a wide range of membrane proteins and receptors, playing a key role in maintaining homeostasis. This enzyme is regulated by phosphorylation and subsequent interaction with 14-3-3 proteins, which primarily affects its ability to interact with various substrates. However, very little is known about the molecular basis of this protein-protein interaction. In this work, we focused on biophysical characterization of the role of individual phosphorylation sites and also on mapping the structural changes in the Nedd4- 2 protein induced by 14-3-3 protein binding. Our experiments using analytical ultracentrifugation methods revealed that two phosphorylation sites Ser342 and Ser448 are primarily required for stable binding of Nedd4-2 to 14-3-3 proteins. The crystal structure of the 14-3-3ηΔC:Nedd4-2335-455 T367A complex than revealed the simultaneous binding of both phosphorylated residues to the binding groove of 14-3-3 protein. Subsequent modeling based on small-angle X-ray scattering and chemical cross-linking data combined with mass spectrometry indicated extensive structural changes in the individual domains of the Nedd4-2 protein. Binding of 14-3-3η protein blocks the WW3 domain of Nedd4-2 in the central channel of 14-3-3 protein, while...
Biophysical characterization of the N-terminal part of protein kinase ASK1.
Honzejková, Karolína ; Obšil, Tomáš (advisor) ; Pavlíček, Jiří (referee)
Apoptosis signal-regulating kinase 1 (ASK1) is an apical kinase of the mitogen-activated protein kinase cascade. Its activity is triggered by various stress stimuli such as reactive oxygen species (ROS), cytokines, endoplasmic reticulum (ER) stress or osmotic stress resulting in the activation of p38 and c-Jun N-terminal kinase metabolic pathways and leading to inflammation or cell death. Dysregulation of ASK1 is linked to several pathologies such as neurodegenerative and cardiovascular diseases and cancer, which makes this protein a potential target of therapeutic intervention. The activity of ASK1 is regulated through protein-protein interactions with 14-3-3 proteins and thioredoxin1 being among the most important negative regulators and tumour necrosis factor receptor-associated factors being an example of positive regulators. Apart from that, ASK1 is also tightly regulated via oligomerization. Despite continual progress being made, the precise molecular mechanism of ASK1 regulation and the role of ASK1 oligomerization in this process still remains unclear to this day owing to the lack of structural data. Interaction of the N-terminal parts of two protomers of ASK1 dimer is one of the key steps in ASK1 activation. It was shown, that the isolated ASK1 catalytic domain (ASK1-CD) forms stable...
Structural study of the complex between the 14-3-3 protein, CaMKK1 and CaMKK1:Ca2+/CaM
Mikulů, Martina ; Obšil, Tomáš (advisor) ; Pavlíček, Jiří (referee)
The Ca2+ -signaling pathway is an important mechanism of cell signaling. Ca2+ /Cal- modulin (CaM)-dependent protein kinases (CaMKs) are members of Ser/Thr protein kinase family. CaMKs are regulated by Ca2+ /CaM binding in response to increase in intracellular level of Ca2+ . An important member of this protein family is Ca2+ /CaM- dependent protein kinase kinase (CaMKK), which is an upstream activator of CaMKI and CaMKIV. There are two isoforms of CaMKK, CaMKK1 and CaMKK2. CaMKK1 is regulated not only by Ca2+ /CaM-binding, but also by phosphorylation by cAMP-dependent protein kinase A (PKA). PKA phosphorylation induces inter- action with the 14-3-3 proteins. Previous studies of interaction between CaMKK1 and 14-3-3 proteins suggested, that the interaction with 14-3-3 proteins keeps CaMKK1 in the PKA-induced inhibited state and blocks its active site. However, the exact mecha- nism of this inhibition is still unclear mainly due to the absence of structural data. Main aim of this diploma thesis was to characterize the protein complexes between CaMKK1, Ca2+ /CaM and 14-3-3γ using analytical ultracentrifugation, small angle X-ray scattering, and chemical cross-linking coupled to mass spectrometry. Analytical ultracentrifugation revealed concentration-dependent dimerization of CaMKK1, which is...
Structural characterization of human protein kinase CaMKK2 and its interactions with binding partners
Koupilová, Nicola ; Obšil, Tomáš (advisor) ; Pavlíček, Jiří (referee)
5 Abstract Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) belongs to the serine/ threonine protein kinase family, which is involved in the calcium signaling pathway. The increase of intracellular calcium concentration induces the activation of calmodulin (CaM), which then activates its binding partners including CaMKII, CaMKIII, CaMKK1 and CaMKK2. CaMKK2 activates CaMKI, CaMKIV and AMP-dependent kinase, AMPK, by phosphorylation. CaMKK2 is naturally present in cells in an autoinhibited state, which is caused by the steric hindrance of the active site by the autoinhibitory domain. When calmodulin binds to the calmodulin-binding domain, the autoinhibitory domain is removed and the active site becomes accessible. Upon activation, CaMKK2 undergoes autophosphorylation, which increases its enzyme activity. Negative regulation of CaMKK2 is mediated by cAMP-dependent protein kinase A (PKA)- and GSK3-dependent phosphorylation. Sites phosphorylated by PKA have been identified for both CaMKK1 and CaMKK2. Two of them are also motifs recognized by scaffolding 14-3-3 proteins. Previous studies have shown that the 14-3-3 protein binding maintains phosphorylated CaMKK2 in an inhibited state by blocking the dephosphorylation of S495, which prevents the binding to calmodulin. However, it is unclear if it is the...
Structural studies of 14-3-3 protein complexes and their stabilization by small molecule compounds
Lentini Santo, Domenico ; Obšil, Tomáš (advisor) ; Brynda, Jiří (referee) ; Pavlíček, Jiří (referee)
Protein-protein interactions (PPIs) play a crucial role in almost all biological processes. Many proteins require a number of dynamic interactions with other proteins and/or biomolecules to function. Proteomic studies have suggested that human protein-protein interactome consists of several hundred thousands of protein complexes. A detailed insight into these PPIs is essential for a complete understanding of the processes mediated by these protein complexes. Because many PPIs are involved in disease-related signaling pathways, such PPIs are important targets for pharmaceutical interventions, especially in situations where a more conventional target (e.g. the active site of an enzyme, the binding site of a receptor) cannot be used. This doctoral thesis focuses on 14-3-3 proteins, a family of eukaryotic adaptor and scaffolding proteins involved in the regulation of many signaling pathways. The 14-3-3 proteins function as interaction hubs and critical regulators of many enzymes, receptors and structural proteins. The main aim was to structurally characterize selected 14-3-3 protein complexes and investigate their stabilization by small molecule compounds. Using combination of protein crystallography, differential scanning fluorimetry, fluorescence polarization and analytical ultracentrifugation, the...
Structural study of the ASK1:thioredoxin complex.
Pšenáková, Katarína
5 ABSTRACT The mitogen-activated protein kinase (MAPK) cascade is an essential member of the cell defense system against stressors. The capability and efficiency of the cell reactions to different stress signals depend on signal transduction pathway, where signals from MAPK kinase kinase (MAP3K) are transferred through phosphorylation to downstream MAPK kinase (MAP2K) and finally to MAPK. Apoptosis signal-regulating kinase 1 (ASK1) is a member of a MAP3K family and its activation and inhibition has a significant participation in a regulation of cell response to stress stimuli. The regulation of ASK1 has a strong influence in pathogenesis of several diseases, the excessive activation of human ASK1 or failure in the control of its function are associated with cardiovascular diseases, neurodegenerative disorders, inflammatory diseases, infectious diseases, tumorigenesis, asthma, diabetes and ageing. The activity of ASK1 is regulated by its interaction with several proteins, the attention is focused on two physiological inhibitors, mammalian thioredoxin (TRX) and the 14-3-3 protein. ASK1 in its inactive form is inhibited by bonds formation with TRX and 14-3-3, however the explicit mechanism of this interaction is unclear due to the absence of structural data. This work is a part of an extensive research about...
Understanding the interaction of antibodies and transcription factors with their ligands through structural biology
Škerlová, Jana
Understanding protein function highly benefits from the knowledge of its three-dimensional structure, especially in the case of protein-ligand complexes. Structural biology methods such as X-ray crystallography, SAXS and NMR are therefore widely used for structural studies of protein-ligand interaction. In this work, these methods were used to understand two biological processes involving protein interactions: X-ray structural analysis was used to study binding of effector molecule to a prokaryotic transcription factor. NMR and SAXS techniques were used to study interaction of a monoclonal antibody with its protein antigen. Transcriptional regulator DeoR negatively regulates the expression of catabolic genes for the utilization of deoxyribonucleosides and deoxyribose in Bacillus subtilis. DeoR comprises an N-terminal DNA-binding domain and a C-terminal effector-binding domain (C-DeoR), and its function is regulated by binding of a small-molecular effector deoxyribose-5-phosphate. We determined crystal structures of C-DeoR both in the free form and in complex with deoxyribose-5-phosphate. Structural analysis revealed unique covalent binding of effector molecule through a reversible Schiff-base double bond with an effector-binding-site lysine residue. The physiological nature of this binding mode was...
Structural study of the complex between the 14-3-3 protein, CaMKK1 and CaMKK1:Ca2+/CaM
Mikulů, Martina ; Obšil, Tomáš (advisor) ; Pavlíček, Jiří (referee)
The Ca2+ -signaling pathway is an important mechanism of cell signaling. Ca2+ /Cal- modulin (CaM)-dependent protein kinases (CaMKs) are members of Ser/Thr protein kinase family. CaMKs are regulated by Ca2+ /CaM binding in response to increase in intracellular level of Ca2+ . An important member of this protein family is Ca2+ /CaM- dependent protein kinase kinase (CaMKK), which is an upstream activator of CaMKI and CaMKIV. There are two isoforms of CaMKK, CaMKK1 and CaMKK2. CaMKK1 is regulated not only by Ca2+ /CaM-binding, but also by phosphorylation by cAMP-dependent protein kinase A (PKA). PKA phosphorylation induces inter- action with the 14-3-3 proteins. Previous studies of interaction between CaMKK1 and 14-3-3 proteins suggested, that the interaction with 14-3-3 proteins keeps CaMKK1 in the PKA-induced inhibited state and blocks its active site. However, the exact mecha- nism of this inhibition is still unclear mainly due to the absence of structural data. Main aim of this diploma thesis was to characterize the protein complexes between CaMKK1, Ca2+ /CaM and 14-3-3γ using analytical ultracentrifugation, small angle X-ray scattering, and chemical cross-linking coupled to mass spectrometry. Analytical ultracentrifugation revealed concentration-dependent dimerization of CaMKK1, which is...
Biophysical characterization of the N-terminal part of protein kinase ASK1.
Honzejková, Karolína ; Obšil, Tomáš (advisor) ; Pavlíček, Jiří (referee)
Apoptosis signal-regulating kinase 1 (ASK1) is an apical kinase of the mitogen-activated protein kinase cascade. Its activity is triggered by various stress stimuli such as reactive oxygen species (ROS), cytokines, endoplasmic reticulum (ER) stress or osmotic stress resulting in the activation of p38 and c-Jun N-terminal kinase metabolic pathways and leading to inflammation or cell death. Dysregulation of ASK1 is linked to several pathologies such as neurodegenerative and cardiovascular diseases and cancer, which makes this protein a potential target of therapeutic intervention. The activity of ASK1 is regulated through protein-protein interactions with 14-3-3 proteins and thioredoxin1 being among the most important negative regulators and tumour necrosis factor receptor-associated factors being an example of positive regulators. Apart from that, ASK1 is also tightly regulated via oligomerization. Despite continual progress being made, the precise molecular mechanism of ASK1 regulation and the role of ASK1 oligomerization in this process still remains unclear to this day owing to the lack of structural data. Interaction of the N-terminal parts of two protomers of ASK1 dimer is one of the key steps in ASK1 activation. It was shown, that the isolated ASK1 catalytic domain (ASK1-CD) forms stable...
Structural study of the ASK1:thioredoxin complex.
Pšenáková, Katarína
5 ABSTRACT The mitogen-activated protein kinase (MAPK) cascade is an essential member of the cell defense system against stressors. The capability and efficiency of the cell reactions to different stress signals depend on signal transduction pathway, where signals from MAPK kinase kinase (MAP3K) are transferred through phosphorylation to downstream MAPK kinase (MAP2K) and finally to MAPK. Apoptosis signal-regulating kinase 1 (ASK1) is a member of a MAP3K family and its activation and inhibition has a significant participation in a regulation of cell response to stress stimuli. The regulation of ASK1 has a strong influence in pathogenesis of several diseases, the excessive activation of human ASK1 or failure in the control of its function are associated with cardiovascular diseases, neurodegenerative disorders, inflammatory diseases, infectious diseases, tumorigenesis, asthma, diabetes and ageing. The activity of ASK1 is regulated by its interaction with several proteins, the attention is focused on two physiological inhibitors, mammalian thioredoxin (TRX) and the 14-3-3 protein. ASK1 in its inactive form is inhibited by bonds formation with TRX and 14-3-3, however the explicit mechanism of this interaction is unclear due to the absence of structural data. This work is a part of an extensive research about...

National Repository of Grey Literature : 13 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.