National Repository of Grey Literature 3 records found  Search took 0.01 seconds. 
Endocytic transport in cytokinesis
Koudelová, Kristina ; Libusová, Lenka (advisor) ; Vosolsobě, Stanislav (referee)
Cytokinesis represents a very complex and highly orchestrated process. For many years, the mechanism of animal cell cytokinesis was described as a result of actomyosin ring constriction. By contrast, in plant cells the division was seen as an outcome of vesicle fusion at the cell plate region between two daughter cells. Recent studies, however, uncover the involvement of vesicular trafficking in animal cell cytokinesis. This thesis aims to highlight the importance of endocytic transport and the necessity of its proper regulation. At first, the origin of vesicles is debated. Afterwards, three main types of endocytic vesicles are examined - Rab11/FIP3 endosomes, Rab35-endosomes and PI(3)P-enriched endosomes, along with their function and interacting partners. Finally, the attention is given to the mechanism of abscission and midbody inheritance. Ongoing processes are accompanied by changes in membrane composition, cytoskeleton reorganization and targeted delivery of distinct cargo molecules. Failure in cytokinesis has been implicated in the etiology of many diseases, such as cancer. Therefore, better understanding of associated endocytic trafficking may provide us with new therapeutic strategies.
The role of cytoskeleton in endosomal fusion and fission
Získalová, Tereza ; Libusová, Lenka (advisor) ; Tolde, Ondřej (referee)
Cytoskeleton plays a key role in endocytic process. Vesicules move along microtubules to target membranes. Microtubules also partake in the formation of endosomal tubules, from which recyclated vesicules are splitted off. Actin network has in endocytosis multi-ple effect as well. In the case of membrane fusion is its role both, positive and negative, for it creates mechanical force which facilitates the fusion in last stage. By contrast, in the first stage, it acts as a physical barrier, which needs to be removed. Actin also actively participates in fission of vesicules. Actin network and microtubules are thus interconnected with endocytic pathway in time and space. Right functional connection of the cytoskeleton with dynamics of endocytic vesicles is driven by many regulatory proteins. Among important regulators of actin network belong for example proteins of Arp2/3, WASH complex, WASP or Rab and Rho proteins. Powered by TCPDF (www.tcpdf.org)
Exocyst subunit AtSEC15b: its role in plant cell morphogenesis and characterization of its Rab interacting partner
Toupalová, Hana ; Žárský, Viktor (advisor) ; Baluška, František (referee) ; Hašek, Jiří (referee)
Organization of endomembrane compartments in all eukaryotic cells is dependent on continuous transport of membrane vesicles. Major part of the core regulators of intracellular membrane transport is represented by small GTPases from the Rab family. Rab GTPases cycle between the GTP-bound "active" and GDP-bound "inactive" forms. In their active form, they are able to interact with specific effectors and perform their functions. Exocyst is an octameric complex involved in regulation of secretion. It functions as an effector of Rab GTPases in yeast and mammals and tethers secretory vesicles to the plasma membrane prior to the actual membrane fusion. Using publicly available expression data, we have identified candidates from Rab GTPase family for the interaction with exocyst subunit AtSEC15b in plants and demonstrated that AtSEC15b specifically interacts with AtRABA4a GTPase. We also showed that, like in yeast and mammals, Arabidopsis Sec15b binds Rab GTPase also probably in GTP-dependent manner, implying that this interaction is well conserved throughout the eukaryotic kingdoms. We also successfully demonstrated the complementation of yeast thermo-sensitive mutant strain, sec15-1. Based on this observation we concluded that AtSEC15b is able to substitute the function of yeast SEC15 and restore the phenotype....

Interested in being notified about new results for this query?
Subscribe to the RSS feed.