National Repository of Grey Literature 3 records found  Search took 0.00 seconds. 
Partial Differential Equations Parallel Solutions
Nečasová, Gabriela ; Šátek, Václav (referee) ; Kunovský, Jiří (advisor)
This thesis deals with the topic of partial differential equations parallel solutions. First, it focuses on ordinary differential equations (ODE) and their solution methods using Taylor polynomial. Another part is devoted to partial differential equations (PDE). There are several types of PDE, there are parabolic, hyperbolic and eliptic PDE. There is also explained how to use TKSL system for PDE computing. Another part focuses on solution methods of PDE, these methods are forward, backward and combined methods. There was explained, how to solve these methods in TKSL and Matlab systems. Computing accuracy and time complexity are also discussed. Another part of thesis is PDE parallel solutions. Thanks to the possibility of PDE convertion to ODE systems it is possible to represent each ODE equation by independent operation unit. These units enable parallel computing. The last chapter is devoted to implementation. Application enables generation of ODE systems for TKSL system. These ODE systems represent given hyperbolic PDE.
Numerical Integration in FITkit Platform
Marek, Martin ; Kunovský, Jiří (referee) ; Šátek, Václav (advisor)
This work discusses the application of numerical methods for solving differential equations using the Taylor series. This procedure was implemented using elementary numerical specialized processors in FPGA contained in FITkit. It was necessary to develop an environment that would be able to interpret the received values and display the graph. It was for a good understanding of the calculation procedure was necessary to develop applications that are able to view the elements in the form appropriate for the uninformed observer. It also experimented with various modifications of this procedure in order to increase the speed of calculation.
Partial Differential Equations Parallel Solutions
Nečasová, Gabriela ; Šátek, Václav (referee) ; Kunovský, Jiří (advisor)
This thesis deals with the topic of partial differential equations parallel solutions. First, it focuses on ordinary differential equations (ODE) and their solution methods using Taylor polynomial. Another part is devoted to partial differential equations (PDE). There are several types of PDE, there are parabolic, hyperbolic and eliptic PDE. There is also explained how to use TKSL system for PDE computing. Another part focuses on solution methods of PDE, these methods are forward, backward and combined methods. There was explained, how to solve these methods in TKSL and Matlab systems. Computing accuracy and time complexity are also discussed. Another part of thesis is PDE parallel solutions. Thanks to the possibility of PDE convertion to ODE systems it is possible to represent each ODE equation by independent operation unit. These units enable parallel computing. The last chapter is devoted to implementation. Application enables generation of ODE systems for TKSL system. These ODE systems represent given hyperbolic PDE.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.