National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Numerical Study Of Pulsating Jet At Moderately Small Reynolds Numbers
Dolinský, Jiří ; Doupník, Petr (referee) ; Popela, Robert (advisor)
Tato numerická studie je zaměřená na axisymetrickou pulzní trysku při zachování relativně nízkých Reynoldsových čísel a její fyzikální podstatu, která dosud nebyla zcela vysvětlena. Hlavním cílem práce bylo prozkoumat a zhodnotit vliv přidání periodického komponentu rychlosti ke stacionární složce rychlosti. Nejdříve byl řešen stacionární případ, poté byla do simulace přidána pulzace a byla vytvořena nestacionární simulace. Numerické řešení stacionárního případu bylo ověřeno pomocí asymptotického řešení, které předložil Hermann Schlichting [44]. Přesnost tohoto analytické řešení byla opravena na základě experimentálních poznatků Andradeho a Tsiena [1]. Pomocí této korekce je zmenšena oblast singularity řešení v blízkosti počátku proudění. Z matematického pohledu se v podstatě jedná korekcí prvního řádu, což bylo dokázáno Revueltou a spol [36]. Samotné analytické řešení bylo vytvořeno v MATLABu zatímco pro numerické řešení byl použit software Ansys Fluent. Při numerické simulaci byly Navier-Stokesovi rovnice integrovány ve své plné formě za pomoci algoritmu založeném na tzv. rovnici korekce tlaku. Pulzační tryska byla poté řešena pro různé parametry tak, aby bylo možné zhodnotit vliv jednotlivých parametrů na evoluci takto modulovaného proudu. Nakonec byla posouzena možná aplikace pulzních trysek v průmyslu s ohledem na možnost snížení emisí v průběhu spalovacího procesu.
Numerical Study Of Pulsating Jet At Moderately Small Reynolds Numbers
Dolinský, Jiří ; Doupník, Petr (referee) ; Popela, Robert (advisor)
Tato numerická studie je zaměřená na axisymetrickou pulzní trysku při zachování relativně nízkých Reynoldsových čísel a její fyzikální podstatu, která dosud nebyla zcela vysvětlena. Hlavním cílem práce bylo prozkoumat a zhodnotit vliv přidání periodického komponentu rychlosti ke stacionární složce rychlosti. Nejdříve byl řešen stacionární případ, poté byla do simulace přidána pulzace a byla vytvořena nestacionární simulace. Numerické řešení stacionárního případu bylo ověřeno pomocí asymptotického řešení, které předložil Hermann Schlichting [44]. Přesnost tohoto analytické řešení byla opravena na základě experimentálních poznatků Andradeho a Tsiena [1]. Pomocí této korekce je zmenšena oblast singularity řešení v blízkosti počátku proudění. Z matematického pohledu se v podstatě jedná korekcí prvního řádu, což bylo dokázáno Revueltou a spol [36]. Samotné analytické řešení bylo vytvořeno v MATLABu zatímco pro numerické řešení byl použit software Ansys Fluent. Při numerické simulaci byly Navier-Stokesovi rovnice integrovány ve své plné formě za pomoci algoritmu založeném na tzv. rovnici korekce tlaku. Pulzační tryska byla poté řešena pro různé parametry tak, aby bylo možné zhodnotit vliv jednotlivých parametrů na evoluci takto modulovaného proudu. Nakonec byla posouzena možná aplikace pulzních trysek v průmyslu s ohledem na možnost snížení emisí v průběhu spalovacího procesu.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.