National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Volumetric Efects Accelerated on GPU
Kubovčík, Tomáš ; Tóth, Michal (referee) ; Starka, Tomáš (advisor)
This thesis deals with simulation and rendering of fluid based volumetric effects, especially effect of fire and smoke. Computations are accelerated on graphics card using modern graphics API with motivation to achieve realistic visual results as well as physically correct calculations. Implemented volumetric effects are distributed as dynamic library which allows addition of these effects to existing applications.
Numerical simulation of compressible flows with the aid of multigrid methods
Živčák, Andrej ; Dolejší, Vít (advisor) ; Knobloch, Petr (referee)
We deal with the numerical solution of the Navier-Stokes equations describing a motion of viscous compressible flows. The governing equations are discretized with the aid of discontinuous Galerkin finite element method which is based on a discontinuous piecewise polynomial approximation. The discretizations leads to a large nonlinear algebraic system. In order to solve this system efficiently, we develop the so-called p-multigrid solution strategy which employ as a projec- tion and a restriction operators the L2 -projection in the spaces of polynomial functions on each element separately. The p-multigrid technique is studied, deve- loped and implemented in the code ADGFEM. The computational performance of the method is presented.
Volumetric Efects Accelerated on GPU
Kubovčík, Tomáš ; Tóth, Michal (referee) ; Starka, Tomáš (advisor)
This thesis deals with simulation and rendering of fluid based volumetric effects, especially effect of fire and smoke. Computations are accelerated on graphics card using modern graphics API with motivation to achieve realistic visual results as well as physically correct calculations. Implemented volumetric effects are distributed as dynamic library which allows addition of these effects to existing applications.
Numerical simulation of compressible flows with the aid of multigrid methods
Živčák, Andrej ; Dolejší, Vít (advisor) ; Knobloch, Petr (referee)
We deal with the numerical solution of the Navier-Stokes equations describing a motion of viscous compressible flows. The governing equations are discretized with the aid of discontinuous Galerkin finite element method which is based on a discontinuous piecewise polynomial approximation. The discretizations leads to a large nonlinear algebraic system. In order to solve this system efficiently, we develop the so-called p-multigrid solution strategy which employ as a projec- tion and a restriction operators the L2 -projection in the spaces of polynomial functions on each element separately. The p-multigrid technique is studied, deve- loped and implemented in the code ADGFEM. The computational performance of the method is presented.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.