National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Characterisation of recombinant mouse glutamate carboxypeptidase III
Janoušková, Karolína ; Konvalinka, Jan (advisor) ; Obšil, Tomáš (referee)
Glutamate carboxypeptidase II (GCPII, PSMA, NAALADase) is transmembrane metalopeptidase and due to cleavage of substrates β-citryl-L-glutamate (BCG), N-acetyl-L-aspartyl-L-glutamate (NAAG) and polyglutamylated folates (Pte-Glun) is being studied as potential therapeutic target. Enzymes, which could compensate for enzyme activity and functions of GCPII, are thus relevant targets of enzymology as well. One of GCPII's homologs with similar enzyme activity is mouse glutamate carboxypeptidase III (GCPIII, NAALADase II). Enzymatic cleavage has not been determined using recombinant mouse GCPIII yet. It is important to kinetically characterize mouse GCPIII so that we can compare enzyme activity with human ortolog. Then we can find out whether mouse model is comparable with human. Recombinant mouse GCPIII was kinetically characterized. Kinetic parameters (KM, kcat) for recombinant mouse GCPIII were measured for substrates NAAG and BCG using radioactive assay. Experiments with the substrate Pte-Glu2 were analyzed using HPLC method. Although human GCPIII is more effective than mouse ortolog at clearage of NAAG, both enzymes are comparable during hydrolysis of BCG. Those results can contribute to better understanding of the role of GCPIII in the most commonly used animal model.
Characterisation of recombinant mouse glutamate carboxypeptidase III
Janoušková, Karolína ; Konvalinka, Jan (advisor) ; Obšil, Tomáš (referee)
Glutamate carboxypeptidase II (GCPII, PSMA, NAALADase) is transmembrane metalopeptidase and due to cleavage of substrates β-citryl-L-glutamate (BCG), N-acetyl-L-aspartyl-L-glutamate (NAAG) and polyglutamylated folates (Pte-Glun) is being studied as potential therapeutic target. Enzymes, which could compensate for enzyme activity and functions of GCPII, are thus relevant targets of enzymology as well. One of GCPII's homologs with similar enzyme activity is mouse glutamate carboxypeptidase III (GCPIII, NAALADase II). Enzymatic cleavage has not been determined using recombinant mouse GCPIII yet. It is important to kinetically characterize mouse GCPIII so that we can compare enzyme activity with human ortolog. Then we can find out whether mouse model is comparable with human. Recombinant mouse GCPIII was kinetically characterized. Kinetic parameters (KM, kcat) for recombinant mouse GCPIII were measured for substrates NAAG and BCG using radioactive assay. Experiments with the substrate Pte-Glu2 were analyzed using HPLC method. Although human GCPIII is more effective than mouse ortolog at clearage of NAAG, both enzymes are comparable during hydrolysis of BCG. Those results can contribute to better understanding of the role of GCPIII in the most commonly used animal model.
Generation and Characterization of Glutamate Carboxypeptidase II (GCPII)-Deficient Mice
Vorlová, Barbora ; Šácha, Pavel (advisor) ; Eckschlager, Tomáš (referee) ; Bařinka, Cyril (referee)
Glutamate carboxypeptidase II (GCPII) is a transmembrane glycoprotein, which consists of short intracellular and transmembrane domains, and a large extracellular domain possessing carboxypeptidase activity. In the human body, GCPII fulfils a neuromodulatory function in the brain and facilitates folate absorption in the small intestine. In addition to the brain and small intestine, high level of GCPII is also present in the prostate and kidney. However, GCPII function in these tissues has not been determined yet. To study the role of GCPII in detail, several research groups attempted to inactivate GCPII encoding gene Folh1 in mice. Surprisingly, the experiments led to rather conflicting results ranging from embryonic lethality to generation of viable GCPII-deficient mice without any obvious phenotype. This dissertation project aimed to dissect the discrepancy using alternative strategy for gene modification. For this purpose, we designed TALENs that specifically targeted exon 11 of Folh1 gene and manipulated mouse zygotes of C57BL/6NCrl genetic background. We analysed all genetically modified mice of F0 generation for presence of TALEN-mediated mutations and established 5 different GCPII-mutant mouse colonies from founder mice that altogether carried 2 frame-shift mutations and 3 small in-frame...
Glutamate Carboxypeptidase II as a Drug Target and a Molecular Address for Cancer Treatment
Knedlík, Tomáš ; Konvalinka, Jan (advisor) ; Stiborová, Marie (referee) ; Souček, Pavel (referee)
Glutamate carboxypeptidase II (GCPII), also known as prostate-specific membrane antigen (PSMA), is a membrane metallopeptidase overexpressed on most prostate cancer cells. Additionally, GCPII also attracted neurologists' attention because it cleaves neurotransmitter N-acetyl-L-aspartyl-L-glutamate (NAAG). Since NAAG exhibits neuroprotective effects, GCPII may participate in a number of brain disorders, which were shown to be ameliorated by GCPII selective inhibitors. Therefore, GCPII has become a promising target for imaging and prostate cancer targeted therapy as well as therapy of neuronal disorders. Globally, prostate cancer represents the second most prevalent cancer in men. With the age, most men will develop prostate cancer. However, prostate tumors are life threatening only if they escape from the prostate itself and start to spread to other tissues. Therefore, considerable efforts have been made to discover tumors earlier at more curable stages as well as to target aggressive metastatic cancers that have already invaded other tissues and become resistant to the standard treatment. Since patients undergoing a conventional therapy (a combination of chemotherapy and surgery) suffer from severe side effects, more effective ways of treatment are being searched for. Novel approaches include selective...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.