National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Characterization of functionalized fibres for mesenchymal stem cells cultivation and differentiation
Greplová, Jarmila ; Amler, Evžen (advisor) ; Rosina, Jozef (referee)
Modification of nanofibers is an actual trend in tissue engineering. Polyvinylacohol (PVA) is nontoxic and biodegradable polymer suitable for preparation of submicron fibers by electrospinning. Main disadvantage of PVA fibers is rapid degradation in aqueous environment. On the other hand surface of fibers contains free hydroxyl group that could be chemically modified. In recent work, chemical modification of PVA nanofibers prepared by needleless electrospinning was investigated. Polyethylenglykol (PEG) linker was introduced to the fiber surface by acylation (PVA-PEG) and further modified by biotin (PVA-PEG-b) as a function agent. Process of chemical modification does not affected fibrous morphology of samples. Interestingly, linkage of PEG-b linker promoted stability of PVA in aqueous environment. PVA-PEG-b sample was stable for 41 days. Stability of samples was strongly dependent on amount of introduced PEG-b linker, thus proposed method of modification allows to prepare nanofibers of different solubility. Additionally, biocompatibility of chemically modified nanofibers with both mesenchymal stem cells (MSC) and chondrocytes was determined. Proliferation of both cell types was not sufficient and number of cells decreased in time, probably because of high hydrophility of modified PVA scaffold. To...
Characterization of functionalized fibres for mesenchymal stem cells cultivation and differentiation
Greplová, Jarmila ; Amler, Evžen (advisor) ; Rosina, Jozef (referee)
Modification of nanofibers is an actual trend in tissue engineering. Polyvinylacohol (PVA) is nontoxic and biodegradable polymer suitable for preparation of submicron fibers by electrospinning. Main disadvantage of PVA fibers is rapid degradation in aqueous environment. On the other hand surface of fibers contains free hydroxyl group that could be chemically modified. In recent work, chemical modification of PVA nanofibers prepared by needleless electrospinning was investigated. Polyethylenglykol (PEG) linker was introduced to the fiber surface by acylation (PVA-PEG) and further modified by biotin (PVA-PEG-b) as a function agent. Process of chemical modification does not affected fibrous morphology of samples. Interestingly, linkage of PEG-b linker promoted stability of PVA in aqueous environment. PVA-PEG-b sample was stable for 41 days. Stability of samples was strongly dependent on amount of introduced PEG-b linker, thus proposed method of modification allows to prepare nanofibers of different solubility. Additionally, biocompatibility of chemically modified nanofibers with both mesenchymal stem cells (MSC) and chondrocytes was determined. Proliferation of both cell types was not sufficient and number of cells decreased in time, probably because of high hydrophility of modified PVA scaffold. To...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.