National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Sintering of Advanced Ceramic Materials
Pouchlý, Václav ; Svoboda, Jiří (referee) ; Ptáček, Petr (referee) ; Maca, Karel (advisor)
Sintering is a one of the key step in a processing of bulk ceramic materials. New sintering methods were invented in the last years. These new sintering methods, according to their authors, can be used for obtaining finer final microstructure of ceramics only by modifying the heating schedule. This work is focused on an influence of the Two Step Sintering method on the final microstructure for oxide ceramics. Obtained experimental results have shown that the effectivity of the Two Step Sintering method is rising with crystallographic symmetry of used material. Thesis is also focused on a high-temperature dilatometry and concept of the Master Sintering Curve. This concept was used for calculation of the activation energy of sintering and finding different sintering mechanisms acting in the intermediate and final stage of sintering. Activation energy of sintering was compared with activation energy of grain growth with target to find the kinetic window. Kinetic window can allow a sintering without a grain growth. Master Sintering Curve method was also used in a pressure assisted unconventional sintering technique Spark Plasma Sintering. Master Sintering Curve applied to a Spark Plasma Sintering technique reveals and quantified different sintering mechanisms acting in Spark Plasma Sintering. These findings led to preparation of transparent tetragonal ZrO2.
Sintering of advanced ceramic materials with the help of high-temperature dilatometry
Pouchlý, Václav ; Cihlář, Jaroslav (referee) ; Maca, Karel (advisor)
This diploma work is focused on exploitation of high-temperature dilatometry in sintering of advanced ceramic materials. Newly developed software is presented in this diploma work. This software is able to calculate activation energy of sintering process via concept of Master Sintering Curve. In the second part of diploma work the software was verified by evaluation of sintering of four different ceramics materials. The following activation energies of sintering were calculated: 990kJ/mol for tetragonal ZrO2 (3mol% Y2O3), 620kJ/mol for cubic ZrO2 (8mol% Y2O3) and 640kJ/mol resp. 720kJ for Al2O3 with two different particle size.
Sintering of Advanced Ceramic Materials
Pouchlý, Václav ; Svoboda, Jiří (referee) ; Ptáček, Petr (referee) ; Maca, Karel (advisor)
Sintering is a one of the key step in a processing of bulk ceramic materials. New sintering methods were invented in the last years. These new sintering methods, according to their authors, can be used for obtaining finer final microstructure of ceramics only by modifying the heating schedule. This work is focused on an influence of the Two Step Sintering method on the final microstructure for oxide ceramics. Obtained experimental results have shown that the effectivity of the Two Step Sintering method is rising with crystallographic symmetry of used material. Thesis is also focused on a high-temperature dilatometry and concept of the Master Sintering Curve. This concept was used for calculation of the activation energy of sintering and finding different sintering mechanisms acting in the intermediate and final stage of sintering. Activation energy of sintering was compared with activation energy of grain growth with target to find the kinetic window. Kinetic window can allow a sintering without a grain growth. Master Sintering Curve method was also used in a pressure assisted unconventional sintering technique Spark Plasma Sintering. Master Sintering Curve applied to a Spark Plasma Sintering technique reveals and quantified different sintering mechanisms acting in Spark Plasma Sintering. These findings led to preparation of transparent tetragonal ZrO2.
Sintering of advanced ceramic materials with the help of high-temperature dilatometry
Pouchlý, Václav ; Cihlář, Jaroslav (referee) ; Maca, Karel (advisor)
This diploma work is focused on exploitation of high-temperature dilatometry in sintering of advanced ceramic materials. Newly developed software is presented in this diploma work. This software is able to calculate activation energy of sintering process via concept of Master Sintering Curve. In the second part of diploma work the software was verified by evaluation of sintering of four different ceramics materials. The following activation energies of sintering were calculated: 990kJ/mol for tetragonal ZrO2 (3mol% Y2O3), 620kJ/mol for cubic ZrO2 (8mol% Y2O3) and 640kJ/mol resp. 720kJ for Al2O3 with two different particle size.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.