National Repository of Grey Literature 3 records found  Search took 0.01 seconds. 
Biogenesis, structure and physiological functions of mitochondrial ATP synthase
Eliáš, Jan ; Mráček, Tomáš (advisor) ; Doležal, Pavel (referee)
Mammalian mitochondrial ATP synthase is an enzyme composed of 18 protein subunits, which is localised in the inner mitochondrial membrane. Its main function is to utilise proton gradient, produced by respiratory chain complexes (RCC), for the synthesis of ATP. Aside from the creation of ATP it is known that its dimers contribute to the correct mitochondrial morphology through the formation of cristae apexes. Furthermore, ATP synthase was proposed to have a role in the mitochondrial permeability transition phenomenon, which is important for regulation of programmed cell death. Over the recent years, our understanding of mammalian ATP synthase biogenesis has been tremendously improved. Its assembly process is now clarified, however the knowledge about assembly intermediates of its peripheral stalk and of subunit c are still not sufficient. We focused precisely on those unsolved questions in the fields of ATP synthase biogenesis and its secondary functions, by the production of a KO model of catalytic β subunit of mammalian ATP synthase F1 domain (βKO). This model was successfully prepared on the background of HEK293 cell line. Its characterisation revealed that disruption of the F1 structure resulted in the inability to assemble functional monomer and resulted in a decay of individual subunits. The only...
New components and functions of mitochondrial ATP synthase.
Ho, Dieu Hien ; Pecina, Petr (advisor) ; Kalous, Martin (referee)
The system of oxidative phosphorylation, or respiratory chain in mitochondria gives the eukaryotic cell total majority of the energy it receives and uses in the form of ATP. F1Fo-ATP synthase, powered by the proton-motive force is directly responsible for the ATP synthesis. Diseases connected to the ATP synthesis can have even lethal consequences. There is therefore no doubt about the need for a detailed analysis of the structure of this enzyme. What is left is to reveal the structure of the transmembrane domains, which are not involved in the synthesis itself, but they can for example work as stabilisers or assembly factors. Outside the synthesis activity the dimers of F1Fo-ATP synthase are apparently taking part in the formation of the cristae of the inner membrane of a mitochondrion. Recently, the role of the enzyme is also considered in the creation of the mitochondrial permeability transition pore.
New components and functions of mitochondrial ATP synthase.
Ho, Dieu Hien ; Pecina, Petr (advisor) ; Kalous, Martin (referee)
The system of oxidative phosphorylation, or respiratory chain in mitochondria gives the eukaryotic cell total majority of the energy it receives and uses in the form of ATP. F1Fo-ATP synthase, powered by the proton-motive force is directly responsible for the ATP synthesis. Diseases connected to the ATP synthesis can have even lethal consequences. There is therefore no doubt about the need for a detailed analysis of the structure of this enzyme. What is left is to reveal the structure of the transmembrane domains, which are not involved in the synthesis itself, but they can for example work as stabilisers or assembly factors. Outside the synthesis activity the dimers of F1Fo-ATP synthase are apparently taking part in the formation of the cristae of the inner membrane of a mitochondrion. Recently, the role of the enzyme is also considered in the creation of the mitochondrial permeability transition pore.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.