National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Effect of changing ionic strength on the properties of catanionic vesicles from HTMA-DS
Filipová, Lenka ; Klučáková, Martina (referee) ; Mravec, Filip (advisor)
This diploma thesis is focused on evaluating the influence of ionic strength on catanionic vesicules made of ion pair amphiphile (IPA) in the form of HTMA-DS (hexadecyltrimethylammonium-dodecyl sulphate). Catanionic vesicles were stabilized by the addition of cationic surfactant dioctadecyldimethylammonium chloride (DODAC) and cholesterol. The ionic strength was attained by adding CaCl2 and Na2SO4 salts in the concentrations 0–300 mM. The changes influenced by ionic strength were studied by dynamic and electrophoretic light scattering (DLS and ELS), fluorescence anisotropy, generalized polarization (GP), pH measurement, and visual observation. During this experiment, the temperature was set both constant and altering in time. The measurement was performed shortly after adding salts to the catanionic vesicles and in-time measurement was performed as well. This thesis follows a bachelor thesis, where the influence of NaCl on the same type of catanionic vesicles in the same range of ionic strength was studied. The CaCl2 and Na2SO4 influences were then compared to the NaCl according to Hofmeister series. By the DLS and ELS method it was found that the size of vesicles with added CaCl2 and Na2SO4 was decreasing at first and then increasing whereas the -potential was exponentially decreasing with increasing ionic strength. The vesicle size, when the ionic strength was applied, was increasing in time while -potential was almost constant in time. The addition of both salts caused slight dehydration of the external part of the membrane which was examined by the fluorescent probe Laurdan (6-dodecanoyl-2-dimethylamino-naphthalene) and generalized polarization. By fluorescence anisotropy with the probe DPH (1,6-diphenyl-1,3,5-hexatriene), it was detected that both salts caused an increase of the fluidity of an inner part of a membrane. By both of the fluorescent techniques, it was confirmed that the increase in temperature caused a phase transition of the membrane from the solid ordered through the liquid ordered phase to the liquid disordered phase. The pH values also did not show any change with the addition of salts. When comparing the salts’ influence (CaCl2 and Na2SO4 versus NaCl) on catanionic vesicles it was found that in most cases NaCl influenced the observed properties the most. The addition of NaCl caused the largest increase in vesicle size, highest -potential values, initial dehydration of the external part of the membrane, and increased fluidity of the inner part of the membrane at I > 15 mM. These results are in agreement with the Hofmeister series. Based on the visual observation, the samples with ionic strength of more than 150 mM for CaCl2 and 75 mM for Na2SO4 were said to be unstable. This fact is in agreement with the result of ELS. The rest of the samples did not show any visual changes in time (28 days). Additionally, the influence of PBS buffer on catanionic vesicles at the same ionic strength values was studied. PBS buffer simulates the ionic environment of living organisms. Its' influence was characterized by the same methods under the same conditions as mentioned above. The effect of PBS on catanionic vesicles displayed almost the same behaviour in the observed properties. During this experiment, it was also found that the PBS influence on the studied properties was more significant than the influence of CaCl2, Na2SO4, and NaCl salts. Influence of PBS was most similar to the effect of NaCl on catanionic vesicles.
Ion Specific Hofmeister Effects on Peptides and Proteins
Hladílková, Jana ; Jungwirth, Pavel (advisor) ; Ettrich, Rüdiger (referee) ; Horinek, Dominik (referee)
Title: Ion Specific Hofmeister Effects on Peptides and Proteins Author: Ing. Jana Hladílková Department: Physical and Macromolecular Chemistry Advisor: Prof. Pavel Jungwirth, DSc., IOCB AS CR Advisor's email address: pavel.jungwirth@uochb.cas.cz Abstract: Classical molecular dynamics simulations in combination with advanced methods of analysis were used to shed light on missing parts of our molecular understanding of the Hofmeister series. In tandem with various experimental techniques, real proteins as well as model systems were investigated in aqueous salt solutions in order to identify and quantify ion-protein interactions either leading or not leading to the canonical cationic and anionic Hofmeister ordering. The potassium cation was found to significantly enhance the BHMT enzymatic activity in contrast to the rest of the common monovalent cations. In the quest to rationalize this behavior, a key potassium binding site in the vicinity of the active site was discovered and described. Moreover, the exceptionally strong effect of K+ on the enzymatic activity was explained by hydration properties of the cations within the limited space of the active site in interplay with their attraction to the nearby negatively charged residues. By contrast, only a small and indirect influence, which follows the cationic...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.