National Repository of Grey Literature 3 records found  Search took 0.00 seconds. 
Prokaryotic proteins of antioxidant defense in Trichomonas vaginalis hydrogenosomes
Smutná, Tamara
Parasitic protists with modified mitochondria represent important and exciting group of organisms, not only from the view of eukaryotic cell evolution but also because these parasites are causative agents of serious and widespread diseases. The study and understanding of their biology is thus necessary for the development of new antiparasitic drugs. These organisms reside in host body cavities with low concentrations of oxygen and while they lack typical mitochondria, they possess mitochondrion-related organelles which still integrate many physiologically important processes. Trichomonas vaginalis is an anaerobic flagellate inhabiting mucosal surface of vagina. Instead of canonical mitochondria, T. vaginalis possesses organelles termed hydrogenosomes. These organelles harbor pathways of ATP-generating metabolism via substrate-level phosphorylation, dependent on enzymes prone to oxidative damage, such as pyruvate:ferredoxin oxidoreductase and Fe-Fe hydrogenase. Because the environment of trichomonads is not fully anaerobic, the parasite had to develop complex strategies to cope with both oxygen and reactive oxygen species (ROS) generated by host immune system cells. Recent data from T. vaginalis proteomic and genomic analyses revealed the presence of bacterial-type proteins potentially participating...
Prokaryotic proteins of antioxidant defense in Trichomonas vaginalis hydrogenosomes
Smutná, Tamara
Parasitic protists with modified mitochondria represent important and exciting group of organisms, not only from the view of eukaryotic cell evolution but also because these parasites are causative agents of serious and widespread diseases. The study and understanding of their biology is thus necessary for the development of new antiparasitic drugs. These organisms reside in host body cavities with low concentrations of oxygen and while they lack typical mitochondria, they possess mitochondrion-related organelles which still integrate many physiologically important processes. Trichomonas vaginalis is an anaerobic flagellate inhabiting mucosal surface of vagina. Instead of canonical mitochondria, T. vaginalis possesses organelles termed hydrogenosomes. These organelles harbor pathways of ATP-generating metabolism via substrate-level phosphorylation, dependent on enzymes prone to oxidative damage, such as pyruvate:ferredoxin oxidoreductase and Fe-Fe hydrogenase. Because the environment of trichomonads is not fully anaerobic, the parasite had to develop complex strategies to cope with both oxygen and reactive oxygen species (ROS) generated by host immune system cells. Recent data from T. vaginalis proteomic and genomic analyses revealed the presence of bacterial-type proteins potentially participating...
Prokaryotic proteins of antioxidant defense in Trichomonas vaginalis hydrogenosomes
Smutná, Tamara ; Hrdý, Ivan (advisor) ; Horváth, Anton (referee) ; Kopáček, Petr (referee)
Parasitic protists with modified mitochondria represent important and exciting group of organisms, not only from the view of eukaryotic cell evolution but also because these parasites are causative agents of serious and widespread diseases. The study and understanding of their biology is thus necessary for the development of new antiparasitic drugs. These organisms reside in host body cavities with low concentrations of oxygen and while they lack typical mitochondria, they possess mitochondrion-related organelles which still integrate many physiologically important processes. Trichomonas vaginalis is an anaerobic flagellate inhabiting mucosal surface of vagina. Instead of canonical mitochondria, T. vaginalis possesses organelles termed hydrogenosomes. These organelles harbor pathways of ATP-generating metabolism via substrate-level phosphorylation, dependent on enzymes prone to oxidative damage, such as pyruvate:ferredoxin oxidoreductase and Fe-Fe hydrogenase. Because the environment of trichomonads is not fully anaerobic, the parasite had to develop complex strategies to cope with both oxygen and reactive oxygen species (ROS) generated by host immune system cells. Recent data from T. vaginalis proteomic and genomic analyses revealed the presence of bacterial-type proteins potentially participating...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.