National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Functional Characterization of SCFFBXO38 Ubiquitin Ligase-dependent Protein Degradation
Dibus, Nikol ; Čermák, Lukáš (advisor) ; Konvalinka, Jan (referee) ; D´Angiolella, Vincenzo (referee)
Ubiquitin ligases are responsible for the specific recognition of proteins targeted for proteasome-dependent degradation. This project focused on the molecular and functional characterization of the SCFFBXO38 ubiquitin ligase. As with many others, its biological function has not yet been elucidated in detail, although it is the only ubiquitin ligase whose mutations lead to the onset of a distal form of muscle atrophy. In the first part of our project, we identified new substrates for this ubiquitin ligase, the nuclear proteins ZXDA and ZXDB, with insufficiently characterized functions. Using genetic and biochemical methods, we have shown that ZXDA/B proteins act as positive regulators of centromeric chromatin integrity and that experimental inactivation of the SCFFBXO38 ubiquitin ligase resulted in a ZXDA/B-dependent stabilization of CENP-A and CENP-B proteins in the centromeric regions. In the second part of the project, we focused on analyzing the mouse model deficient in the Fbxo38 gene. We demonstrated that loss of Fbxo38 leads to growth retardation affecting various organs, including the male reproductive system. A detailed histological examination revealed pathological alterations in the seminiferous tubules, accompanied by a lower number of spermatozoa and decreased fertility. We have shown...
The role of Fbxo38 ubiquitin ligase in mouse spermatogenesis
Zobalová, Eliška ; Čermák, Lukáš (advisor) ; Stopka, Pavel (referee)
Cullin-dependent ubiquitin ligases are responsible for the regulation of most cellular processes. Despite their mutated forms being the cause of many human diseases, their physiological roles are not sufficiently described. In the presented results, we focused on the physiological role of ubiquitin ligase SCFFBXO38 (SKP1-CULLIN1-FBXO38), whose mutated forms are responsible for the progression of distal neuropathy. Preparation of mouse model deficient in FBXO38 revealed that homozygous pups were born in a lower than expected ratio. Animals were growth-retarded, both at the level of the whole organism and individual organs, especially the liver and testes. Males with a deletion in the Fbxo38 gene had significantly lower reproductive capacity, which was associated with lower production of mature sperm and pathological changes in the structure of seminiferous tubules. We found that the FBXO38 protein is functionally expressed in Sertoli cells responsible for regulating spermatogenesis and seminiferous tubules integrity. Detailed analysis of spermatogenic populations revealed a defect at the level of spermatocyte differentiation. The dynamics of this differentiation depend on the hematotesticular barrier functional integrity formed by the intercellular junctions of Sertoli cells. We confirmed that the...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.