National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Mechanisms of DNA repair in the moss Physcomitrella patens
Holá, Marcela ; Angelis, Karel (advisor) ; Bříza, Jindřich (referee) ; Fajkus, Jiří (referee)
Over the course of an organism's life, its genome is exposed to endogenous and exogenous chemical, physical and biological agents - genotoxins. These genotoxins alter its basic structural components - sugar residues, phosphodiester bonds, and nitrogenous bases. Organisms have therefore evolved a plethora of different strategies to both repair DNA lesions and maintain genomic stability. These DNA repair pathways are linked with several other cell pathways, including chromatin remodelling, DNA replication, transcription, cell cycle control, apoptosis - programmed cell death (PCD), thereby providing a coordinated cellular response to DNA damage. Biochemical mechanisms of DNA repair are relatively well understood in yeast and mammals, however, far less so in plants. While these repair mechanisms are evolutionary conserved, significant differences still remain. Therefore, further investigation is required. This thesis summarises the introduction of a novel plant model - the moss, Physcomitrella patens (Physcomitrella). As a haploid gametophyte with unique characteristics of high frequency of homologous recombination (HR), and apical growth of filaments, it is an ideal organism to study DNA repair in plants. Previous research on Physcomitrella regarding mechanisms of DNA lesion repair induced by...
Mechanisms of DNA repair in the moss Physcomitrella patens
Holá, Marcela ; Angelis, Karel (advisor) ; Bříza, Jindřich (referee) ; Fajkus, Jiří (referee)
Over the course of an organism's life, its genome is exposed to endogenous and exogenous chemical, physical and biological agents - genotoxins. These genotoxins alter its basic structural components - sugar residues, phosphodiester bonds, and nitrogenous bases. Organisms have therefore evolved a plethora of different strategies to both repair DNA lesions and maintain genomic stability. These DNA repair pathways are linked with several other cell pathways, including chromatin remodelling, DNA replication, transcription, cell cycle control, apoptosis - programmed cell death (PCD), thereby providing a coordinated cellular response to DNA damage. Biochemical mechanisms of DNA repair are relatively well understood in yeast and mammals, however, far less so in plants. While these repair mechanisms are evolutionary conserved, significant differences still remain. Therefore, further investigation is required. This thesis summarises the introduction of a novel plant model - the moss, Physcomitrella patens (Physcomitrella). As a haploid gametophyte with unique characteristics of high frequency of homologous recombination (HR), and apical growth of filaments, it is an ideal organism to study DNA repair in plants. Previous research on Physcomitrella regarding mechanisms of DNA lesion repair induced by...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.