National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Experimental study on the adsorption of bacterial cells on solid surfaces
Kahanovská, Kristína ; Obruča, Stanislav (referee) ; Sedláček, Petr (advisor)
This diploma thesis focuses on an optimalization of simple laboratory model systems which serve as an innovative tool for an experimental study on the adsorption of bacterial cells on solid surfaces. In the description of living biological systems, an adsorption is labelled as an adhesion. Designed model systems were validated with a physical-chemical analysis. Various techniques were used to determine bacteria properties, more specifically Burkholderia cepacia and Bacillus megaterium. The solid surfaces after sorption of bacterial cells of Bacillus megaterium were subjected to a structural and visual analysis. Applying the theoretical approach (e.g. using different physical-chemical models) to study the adhesion of microorganisms to a particular surface allows a prediction of the conditions for a successful adhesion. The results will give us a better understanding of a formation and development of a biofilm.
Experimental study on the adsorption of bacterial cells on solid surfaces
Kahanovská, Kristína ; Obruča, Stanislav (referee) ; Sedláček, Petr (advisor)
This diploma thesis focuses on an optimalization of simple laboratory model systems which serve as an innovative tool for an experimental study on the adsorption of bacterial cells on solid surfaces. In the description of living biological systems, an adsorption is labelled as an adhesion. Designed model systems were validated with a physical-chemical analysis. Various techniques were used to determine bacteria properties, more specifically Burkholderia cepacia and Bacillus megaterium. The solid surfaces after sorption of bacterial cells of Bacillus megaterium were subjected to a structural and visual analysis. Applying the theoretical approach (e.g. using different physical-chemical models) to study the adhesion of microorganisms to a particular surface allows a prediction of the conditions for a successful adhesion. The results will give us a better understanding of a formation and development of a biofilm.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.