National Repository of Grey Literature 8 records found  Search took 0.01 seconds. 
Backpressure Steam Turbine
Kubiš, Zdeněk ; Ondřej, Štěpánek (referee) ; Štěpánek, Ondřej (referee) ; Fiedler, Jan (advisor)
The theme of the master’s thesis is to design a 60 MW single-casing steam turbine for the two-stage district water heating. The turbine is designed for cogeneration cycle, has four uncontrolled extractions and the outlet down to the heater. First, there is the thermodynamic calculation of the turbine operation with 100 % steam mass flow. Further, the detailed design of flow part with the strength calculation of blades and diaphragms is drawn. By the end of the thesis, the required operations are compared and corresponding heat balancing diagrams are listed. The thesis also includes a turbine longitudinal section.
Backpressure Steam Turbine
Chrástek, Pavel ; Novotný, Zdeněk (referee) ; Fiedler, Jan (advisor)
The diploma works demonstrates the thermodynamic calculation and design of the geometry flow profile of the back-pressure steam turbine for specified inlet and outlet conditions of steam. Next target of the work is to design the drawing of the turbine axial cross section. Structuring of this diploma work calculation is following: - regulating stage thermodynamic calculation - turbine stages calculation - equalizing-balancing piston calculation - entire turbine intrinsic efficiency and power rating determination - basic calculation of gearbox parameters and RENK-type gearbox selection for turbine and generator arrangement
Backpressure Steam turbine
Merta, Libor ; Krbek, Jaroslav (referee) ; Fiedler, Jan (advisor)
The Diploma Thesis deals with a design of a backpressure turbine without any bleeds. The fundament of the Diploma Thesis is a thermodynamical calculation of particular parts of the turbine. Technical solutions are designed according to given details of a steam and chosen conditions of use.
Steam turbine for an industrial CHP plant
Tretera, Michal ; Fiedler, Jan (referee) ; Kracík, Petr (advisor)
This diploma thesis deals with the thermodynamic design of a backpressure steam turbine. The mass flow of steam through the turbine is determined based on the required heat output, which is transferred in a heat exchanger at the turbine outlet. The governing stage of the turbine is in form of an impulse stage, with optimization of degree of reaction included. During the optimization, a suitable rotor blade was chosen as well as its size. The governing stage is followed by fifteen stages of reaction blading with the stage loading coefficient in the range of 2,75 to 2,80. The governing stage and the reaction blading both meet the mechanical strength requirements. Balancing piston, sealing system and bearings are also designed. Finally, a turbine characteristic is created as well as a longitudinal section. The designed turbine has a speed of 10 000 rpm. While supplying the required heat output, it has a terminal power output of 5 863,4 kW and a thermodynamic efficiency of 84,69 %.
Steam turbine for an industrial CHP plant
Tretera, Michal ; Fiedler, Jan (referee) ; Kracík, Petr (advisor)
This diploma thesis deals with the thermodynamic design of a backpressure steam turbine. The mass flow of steam through the turbine is determined based on the required heat output, which is transferred in a heat exchanger at the turbine outlet. The governing stage of the turbine is in form of an impulse stage, with optimization of degree of reaction included. During the optimization, a suitable rotor blade was chosen as well as its size. The governing stage is followed by fifteen stages of reaction blading with the stage loading coefficient in the range of 2,75 to 2,80. The governing stage and the reaction blading both meet the mechanical strength requirements. Balancing piston, sealing system and bearings are also designed. Finally, a turbine characteristic is created as well as a longitudinal section. The designed turbine has a speed of 10 000 rpm. While supplying the required heat output, it has a terminal power output of 5 863,4 kW and a thermodynamic efficiency of 84,69 %.
Backpressure Steam Turbine
Kubiš, Zdeněk ; Ondřej, Štěpánek (referee) ; Štěpánek, Ondřej (referee) ; Fiedler, Jan (advisor)
The theme of the master’s thesis is to design a 60 MW single-casing steam turbine for the two-stage district water heating. The turbine is designed for cogeneration cycle, has four uncontrolled extractions and the outlet down to the heater. First, there is the thermodynamic calculation of the turbine operation with 100 % steam mass flow. Further, the detailed design of flow part with the strength calculation of blades and diaphragms is drawn. By the end of the thesis, the required operations are compared and corresponding heat balancing diagrams are listed. The thesis also includes a turbine longitudinal section.
Backpressure Steam turbine
Merta, Libor ; Krbek, Jaroslav (referee) ; Fiedler, Jan (advisor)
The Diploma Thesis deals with a design of a backpressure turbine without any bleeds. The fundament of the Diploma Thesis is a thermodynamical calculation of particular parts of the turbine. Technical solutions are designed according to given details of a steam and chosen conditions of use.
Backpressure Steam Turbine
Chrástek, Pavel ; Novotný, Zdeněk (referee) ; Fiedler, Jan (advisor)
The diploma works demonstrates the thermodynamic calculation and design of the geometry flow profile of the back-pressure steam turbine for specified inlet and outlet conditions of steam. Next target of the work is to design the drawing of the turbine axial cross section. Structuring of this diploma work calculation is following: - regulating stage thermodynamic calculation - turbine stages calculation - equalizing-balancing piston calculation - entire turbine intrinsic efficiency and power rating determination - basic calculation of gearbox parameters and RENK-type gearbox selection for turbine and generator arrangement

Interested in being notified about new results for this query?
Subscribe to the RSS feed.