National Repository of Grey Literature 6 records found  Search took 0.00 seconds. 
Subcellular localization of resistant proteins Vga(A)LC and Msr(A) using fluorescence microscopy
Nguyen Thi Ngoc, Bich ; Balíková Novotná, Gabriela (advisor) ; Lichá, Irena (referee)
Vga(A)LC and Msr(A) are clinically significant resistant proteins in staphylococci that confer resistance to translational inhibitors. They belong to ARE ABC-F protein subfamily, which is part of ABC transporters. Unlike typical ABC transporters, ABC-F proteins do not have transmembrane domains that are responsible for the transport of substances through the membrane. Therefore, they do not have characteristic transport function but regulatory or resistance function. Their mechanism of action on the ribosome has been described only recently, where these proteins displace the antibiotic from the ribosome. However, some aspects of their function are still unclear. For example, what is the function of the Vga(A) location on a membrane that has been detected in the membrane fraction but not in the ribosomal. In this work, using fluorescence microscopy, I observed subcellular localization of the Vga(A)LC-mEos2, Vga(A)LC-GFP and Msr(A)-eqFP650 resistant fusion proteins in live cells of S. aureus under different culture conditions . It has been shown that Vga(A)LC-GFP and Msr(A)-eqFP650 occur in a foci near the membrane. Depending on ATPase activity or the presence of an antibiotic, the localization of Msr(A)-eqFP650 in the cell changes from focal to diffuse, presumably on ribosomes, suggesting a...
Antibiotic resistance conferred by members of ARE subfamily of ABC proteins
Veselá, Ludmila ; Balíková Novotná, Gabriela (advisor) ; Borčin, Kateřina (referee)
The main topic of this thesis is the ARE subfamily of ABC transporters. The importance of the proteins of this subfamily lies in the fact that they confer resistance to several classes of clinically important antibiotics: macrolides, lincosamides, streptogramines and pleuromutilines and they do it in significant pathogens, as for example Staphylococcus aureus. Compared to canonical ABC transporters, the structure of ABC proteins lacks the transmembrane domain (TMD) and so far, there where not even found an integrating transmembrane protein. Due to these facts, the mechanism of resistance conferred by these proteins remains unclear. In the thesis, both suggested hypotheses of the mechanism of how these proteins work are discussed. The first hypothesis presumes the active efflux of antibiotics out of the bacteria. The second hypothesis suggests release of antibiotic from its binding site initiated by ARE proteins, followed by its passive diffusion out of the cell. Keywords: ABC proteins, ARE proteins, resistance, MLS, Vga
Characterization of the ABC-F protein Sco0636 in Streptomyces coelicolor
Pinďáková, Nikola ; Balíková Novotná, Gabriela (advisor) ; Mikušová, Gabriela (referee)
The main topic of this diploma thesis is ARE (resistance) proteins from the ABC-F family of the second class of ABC proteins. ARE proteins confer resistance to antibiotics that bind to a large ribosomal subunit and therefore inhibit proteosynthesis. One of the ARE proteins is the Lmr (C) protein, which is part of the linkomycin biosynthesis cluster of Streptomyces lincolnensis, and according to new results, Lmr (C) does not have to be just resistant protein but may have also regulatory function. We decided to study Sco0636, the closest homologue to Lmr (C) in Streptomyces coelicolor, which is a model organism in the study of secondary metabolism. Thanks to the production of color pigments, it is possible to monitor the effect of ARE proteins on secondary metabolism directly on the plates. I prepared the deletion mutant and the strain with constitutive expression of sco0636, and observed the effect on the phenotype. I followed the production of a blue asset and set a minimum inhibitory concentration to selected antibiotics, which bind to the ribosome. I have found that Sco0636 gives high resistance to tiamulin and so it has been named TiaA. The deletion of gene sco0636 accelerated production of actinorodine, and constitutive expression of this gene slowed down production. Keywords: ABC proteins,...
Characterization of the ABC-F protein Sco0636 in Streptomyces coelicolor
Pinďáková, Nikola ; Balíková Novotná, Gabriela (advisor) ; Mikušová, Gabriela (referee)
The main topic of this diploma thesis is ARE (resistance) proteins from the ABC-F family of the second class of ABC proteins. ARE proteins confer resistance to antibiotics that bind to a large ribosomal subunit and therefore inhibit proteosynthesis. One of the ARE proteins is the Lmr (C) protein, which is part of the linkomycin biosynthesis cluster of Streptomyces lincolnensis, and according to new results, Lmr (C) does not have to be just resistant protein but may have also regulatory function. We decided to study Sco0636, the closest homologue to Lmr (C) in Streptomyces coelicolor, which is a model organism in the study of secondary metabolism. Thanks to the production of color pigments, it is possible to monitor the effect of ARE proteins on secondary metabolism directly on the plates. I prepared the deletion mutant and the strain with constitutive expression of sco0636, and observed the effect on the phenotype. I followed the production of a blue asset and set a minimum inhibitory concentration to selected antibiotics, which bind to the ribosome. I have found that Sco0636 gives high resistance to tiamulin and so it has been named TiaA. The deletion of gene sco0636 accelerated production of actinorodine, and constitutive expression of this gene slowed down production. Keywords: ABC proteins,...
Subcellular localization of resistant proteins Vga(A)LC and Msr(A) using fluorescence microscopy
Nguyen Thi Ngoc, Bich ; Balíková Novotná, Gabriela (advisor) ; Lichá, Irena (referee)
Vga(A)LC and Msr(A) are clinically significant resistant proteins in staphylococci that confer resistance to translational inhibitors. They belong to ARE ABC-F protein subfamily, which is part of ABC transporters. Unlike typical ABC transporters, ABC-F proteins do not have transmembrane domains that are responsible for the transport of substances through the membrane. Therefore, they do not have characteristic transport function but regulatory or resistance function. Their mechanism of action on the ribosome has been described only recently, where these proteins displace the antibiotic from the ribosome. However, some aspects of their function are still unclear. For example, what is the function of the Vga(A) location on a membrane that has been detected in the membrane fraction but not in the ribosomal. In this work, using fluorescence microscopy, I observed subcellular localization of the Vga(A)LC-mEos2, Vga(A)LC-GFP and Msr(A)-eqFP650 resistant fusion proteins in live cells of S. aureus under different culture conditions . It has been shown that Vga(A)LC-GFP and Msr(A)-eqFP650 occur in a foci near the membrane. Depending on ATPase activity or the presence of an antibiotic, the localization of Msr(A)-eqFP650 in the cell changes from focal to diffuse, presumably on ribosomes, suggesting a...
Antibiotic resistance conferred by members of ARE subfamily of ABC proteins
Veselá, Ludmila ; Balíková Novotná, Gabriela (advisor) ; Borčin, Kateřina (referee)
The main topic of this thesis is the ARE subfamily of ABC transporters. The importance of the proteins of this subfamily lies in the fact that they confer resistance to several classes of clinically important antibiotics: macrolides, lincosamides, streptogramines and pleuromutilines and they do it in significant pathogens, as for example Staphylococcus aureus. Compared to canonical ABC transporters, the structure of ABC proteins lacks the transmembrane domain (TMD) and so far, there where not even found an integrating transmembrane protein. Due to these facts, the mechanism of resistance conferred by these proteins remains unclear. In the thesis, both suggested hypotheses of the mechanism of how these proteins work are discussed. The first hypothesis presumes the active efflux of antibiotics out of the bacteria. The second hypothesis suggests release of antibiotic from its binding site initiated by ARE proteins, followed by its passive diffusion out of the cell. Keywords: ABC proteins, ARE proteins, resistance, MLS, Vga

Interested in being notified about new results for this query?
Subscribe to the RSS feed.