National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
The function of 2'-O-methylated RNA in the context of viral infection
Potužník, Jiří ; Macíčková Cahová, Hana (advisor) ; Forstová, Jitka (referee)
RNA is subject to a wide array of post-transcriptional modifications. 2'-O-methylation is an essential intrinsic modification of RNA. It affects the structure and reactivity of the molecule as well as its function. 2'-O-methylation is highly conserved, present in all three domains of life. Viral RNA uses this modification to mimic the host and evade detection by the immune system. There are two main mechanisms, through which viral 2'-O-methylated RNA does this. The first is evading detection by a pattern recognition receptor form the RIG-I-like receptor family Mda5. Mda5 is capable of detecting unmethylated RNA and recognising it as non-self, thus initiating an immune response. The second mechanism the evasion and restriction of an effector molecule IFIT. IFIT proteins are capable of detecting the absence of 2'-O- methylation on viral RNAs and inhibiting their translation. They do this by interfering with the formation of the ternary complex, an essential member of ribosomal formation. Using viral 2'- O-methylation as a target for therapy, it is possible to develop attenuated vaccines. Keywords: viral RNA, RNA modifications, 2'-O-methylation, Mda5, IFIT, RIG-I-like receptors, epitranscriptomics, WNV, JEV
Influence of rRNA modifications on translation initiation in eukaryots
Kročová, Eliška ; Pospíšek, Martin (advisor) ; Kouba, Tomáš (referee)
Modifications of ribosomal RNA are present in every livivng organism. The function of rRNA modifications could be studied only when the process of modifications was described. Currently, scientists study not only individual modifications but also the importance of global level of modifications for maturation and function of ribosome. This thesis deals with the influence of 2'-O-methylation of citidine 1639 and adenosine 100 in 18S rRNA and uridine 2729 in 25S rRNA on initiation in yeast Saccharomyces cerevisiae with special attention of translation controlled by internal ribosome entry site (IRES). Strains with deletion in genes snR51, snR70 and duoble deletion in both genes were successfully created during my master study. Pilot experiments showed the importance of products of both genes in translation initiation.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.