National Repository of Grey Literature 18 records found  1 - 10next  jump to record: Search took 0.01 seconds. 
Biosensors based on functionalized graphene
Pavlásková, Lucie ; Skládal, Petr (referee) ; Bartošík, Miroslav (advisor)
V této práci byl demonstrován grafenový polem řízený transistor (GFET) jako platforma pro detekci glukózy. Sukcinimidyl ester pyrenbutanové kyseliny (PSE) sloužící jako nosič a enzym glukóza oxidáza (GOx) byly úspěšně použity k funkcionalizaci grafenového kanálu ve FE transistoru. Enzym GOx byl imobilizován na kanálu pro glukózovou detekci, jelikož indukuje selektivní katalytickou reakci glukózy. Proces funkcionalizace byl charakterizován pomocí Ramanovy spektroskopie a Atomární silové mikroskopie (AFM). Vyrobený biosenzor na bázi grafenu umožnil elektrickou detekci glukózy ve dvou různých uspořádáních. V uspořádní FET prostřednictvím posunu Diracova bodu ve voltampérové charakteristice, jakož i v nastavení pro kotinuální monitorování v reálném čase prostřednictvím změny odporu grafenového kanálu. Tato studie naznačuje, že grafen je slibným materiálem pro vývoj nanoelektronických biosenzorů včetně aplikací pro monitorování hladiny glukózy.
DESIGN OF FIBER-OPTIC BIOSENSOR WITH NEAR-INFRARED SPECTRAL ANALYSIS
Křepelka, Pavel ; Jakubec,, Martin (referee) ; Skládal, Petr (referee) ; Mikulka, Jan (advisor)
This thesis deals with a measurement and interpretation of NIR spectra of bacterial cells and design of biosensor using this analytical technique. In the first chapter, there is introduction of current state of knowledge in the field of NIR spectroscopy in microbiology and technology of fiber optic biosensors. The summary of this chapter shows that NIR is a suitable technique for direct molecular analysis of bacteria, but it suffers from low sensitivity and insufficient interpretation of bacterial spectra. In the next part of the thesis, there is a theoretical background of spectral analysis techniques and technology of fiber optic sensors. In the practical part of this work, there is suggested the elimination of disadvantages of NIR spectroscopy in microbiology by a series of experiments used for interpretation of NIR spectra of bacteria and design of fiber optic sensor to increase sensitivity of this technique. In this work, spectral regions important for the identification of bacterial strains were determined and partially interpreted and the sensor for bacterial analysis capable of classifying strains based on 105 captured cells was designed. Therefore, the objectives of this work were fulfilled.
Application of metal and semiconductor nanostructures for biodetection
Kejík, Lukáš ; Skládal, Petr (referee) ; Kolíbal, Miroslav (advisor)
The master’s thesis deals with two applications of gold discoidal nanostructures exhibiting plasmon resonance for biodetection. The first approach considers the detection of changes in the phase on plasmonic antennas using coherence-controlled holography microscope. It was found that the steepness of the phase is increasing with the illumination wavelength when plasmon resonance is excited in larger antennas. The sensitivity of the phase to refractive-index changes of the surrounding media was observed when the largest response was given by antennas in resonance with wavelength of illumination. Next part deals with plasmon resonance detection by means of optical spectroscopy combined with voltametry which characterizes the electrochemical activity. Changes in resonance wavelength induced by the presence of SSC buffer were observed, although this influence seems to diminish in time. Conducted experiments have also shown that oxygen-plasma cleaning is not suitable for sample surface cleaning because of oxidation of metals including gold as well.
Preparation and Characterization of Complex Nanoparticles by Field-Flow Fractionation and Advanced Spectroscopic Methods
Kotouček, Jan ; Krejsek,, Jan (referee) ; Skládal, Petr (referee) ; Turánek,, Jaroslav (advisor)
Liposomes are versatile biocompatible and biodegradable carriers for a variety of medical applications. As the first nanoparticles, they have been approved for pharmaceutical use so far, and many liposome-based preparations are in clinical trials. Classical methods of liposome preparation represent potential limitations in technology transfer from laboratory to industrial scale. New, microfluidic techniques overcome these limitations and offer new possibilities for controlled, continuous preparation of liposomal particles in a laboratory and industrial scale. An important element in the development of new nanoparticle systems is their complex characterization and purification. In addition to the established chromatographic techniques, the Field flow fractionation technique, in particular the Asymmetrical flow Field-flow fractionation, is described. This relatively new technique in conjunction with the MALS/DLS/DAD-UV/dRI online detectors enables the purification and characterization of complex samples. The main advantage of this technique lies in the possibility of separation under native conditions, which plays an important role in the separation of biopolymers in particular. Separation in the “empty” channel then eliminates sample degradation due to unwanted interactions at the stationary phase-sample interface. The theoretical part of this thesis describes the possibilities of preparation, modification, and characterization of liposomal nanoparticles. For this purpose, optical methods based on dynamic light scattering, multi-angle dynamic light scattering and nanoparticle tracking analysis techniques are described, as well as a non-optical method using "particle by the particle" analysis, tunable resistive pulse sensing method. A separate chapter of the theoretical part is dedicated to the technique Asymmetrical flow Field-flow fractionation in connection with the above-mentioned detectors. Important results associated with this work are summarized in the attached scientific paper, together with the result summaries and the author's contributions.
Study of Biomolecular Interactions with Surface Plasmon Resonance Biosensors
Šípová, Hana ; Homola, Jiří (advisor) ; Houska, Milan (referee) ; Skládal, Petr (referee)
Surface plasmon resonance (SPR) biosensors represent one of the most advanced sensing technologies for real-time studies of biomolecular interactions. In this thesis, methods for functionalization of SPR substrates were optimized and studied via spectroscopic methods. Effects related to the SPR sensor microfluidic interface on the measured biomolecular interactions were analyzed, and furthermore, means to decrease mass-transport limitations were proposed. Several SPR-based assays regarding the detection of nucleic acids were developed, which allow for the detection of physiologically relevant concentrations of nucleic acids as well as point mutations in a nucleic acid sequence. Assays for the determination of the enzymatic activity of HIV integrase and ribonuclease H were developed. These assays can be employed for the design and synthesis of molecules that function either as antiviral drugs or as gene-regulating agents.
Functional biomolecular coatings for affinity biosensors for medical diagnostics
Hemmerová, Erika ; Homola, Jiří (advisor) ; Procházka, Marek (referee) ; Skládal, Petr (referee)
OF THE DOCTORAL THESIS Title: Functional biomolecular coatings for affinity biosensors for medical diagnostics Author: Erika Hemmerová Department: Institute of Photonics and Electronics of the Czech Academy of Sciences Chaberská 1014/57, 182 51 Prague, Czech Republic Supervisor: Prof. Ing. Jiří Homola, CSc., DSc. Institute of Photonics and Electronics of the Czech Academy of Sciences Chaberská 1014/57, 182 51 Prague, Czech Republic Abstract: Detection and identification of diseases in their early stages represents one of the major goals of the contemporary medical diagnostics. This need drives a research of biomolecular processes behind the particular diseases and development of analytical devices for routine and long-term monitoring of the individuals' health. Surface plasmon resonance biosensors (SPR) have potential to contribute to addressing both of these challenges. This work aims at advancing multiple aspects of SPR biosensor method. It involves study and optimization of selected functional biomolecular coatings in order to improve the performance characteristics of SPR biosensors. It demonstrates utilization of these coatings in novel detection platforms for sensitive monitoring of multiple analytes, and in research of selected biomolecular interactions related to Alzheimer's disease. The...
Electronic effects at the interface between biomolecules, cells and diamond
Krátká, Marie ; Rezek, Bohuslav (advisor) ; Cifra, Michal (referee) ; Skládal, Petr (referee)
Understanding and control of interactions between biological environment (cells, proteins, tissues, membranes, electrolytes, etc.) and solid-state surfaces is fundamental for biomedical applications such as bio-sensors, bio-electronics, tissue engineering and implant materials as well as for environmental monitoring, security and other fields. Diamond can provide unique combination of semiconducting, chemical, optical, biocompatible and other properties for this purpose. In this thesis we characterize electronic properties of protein-diamond interface by employing a solution-gated field-effect transistor (SGFET) based on hydrogen-terminated diamond, surface of which is exposed to biological media. We elucidate the role of adsorbed protein layer on the electronic response of the diamond transistor. We investigate effects of cells (using mainly osteoblast cells as model) on diamond SGFETs transfer characteristics and gate currents. We employ nanocrystalline diamond (NCD) thin films of different grain sizes (80 - 250 nm) to characterize and discuss influence of grain boundaries and sp2 phase on bio- electronic function of SGFETs. We investigate effects of gamma irradiation on function and stability of hydrogen-terminated diamond SGFETs interfaced with proteins and cells, showing feasibility of...
Biosensors based on functionalized graphene
Pavlásková, Lucie ; Skládal, Petr (referee) ; Bartošík, Miroslav (advisor)
V této práci byl demonstrován grafenový polem řízený transistor (GFET) jako platforma pro detekci glukózy. Sukcinimidyl ester pyrenbutanové kyseliny (PSE) sloužící jako nosič a enzym glukóza oxidáza (GOx) byly úspěšně použity k funkcionalizaci grafenového kanálu ve FE transistoru. Enzym GOx byl imobilizován na kanálu pro glukózovou detekci, jelikož indukuje selektivní katalytickou reakci glukózy. Proces funkcionalizace byl charakterizován pomocí Ramanovy spektroskopie a Atomární silové mikroskopie (AFM). Vyrobený biosenzor na bázi grafenu umožnil elektrickou detekci glukózy ve dvou různých uspořádáních. V uspořádní FET prostřednictvím posunu Diracova bodu ve voltampérové charakteristice, jakož i v nastavení pro kotinuální monitorování v reálném čase prostřednictvím změny odporu grafenového kanálu. Tato studie naznačuje, že grafen je slibným materiálem pro vývoj nanoelektronických biosenzorů včetně aplikací pro monitorování hladiny glukózy.
Functional biomolecular coatings for affinity biosensors for medical diagnostics
Hemmerová, Erika ; Homola, Jiří (advisor) ; Procházka, Marek (referee) ; Skládal, Petr (referee)
OF THE DOCTORAL THESIS Title: Functional biomolecular coatings for affinity biosensors for medical diagnostics Author: Erika Hemmerová Department: Institute of Photonics and Electronics of the Czech Academy of Sciences Chaberská 1014/57, 182 51 Prague, Czech Republic Supervisor: Prof. Ing. Jiří Homola, CSc., DSc. Institute of Photonics and Electronics of the Czech Academy of Sciences Chaberská 1014/57, 182 51 Prague, Czech Republic Abstract: Detection and identification of diseases in their early stages represents one of the major goals of the contemporary medical diagnostics. This need drives a research of biomolecular processes behind the particular diseases and development of analytical devices for routine and long-term monitoring of the individuals' health. Surface plasmon resonance biosensors (SPR) have potential to contribute to addressing both of these challenges. This work aims at advancing multiple aspects of SPR biosensor method. It involves study and optimization of selected functional biomolecular coatings in order to improve the performance characteristics of SPR biosensors. It demonstrates utilization of these coatings in novel detection platforms for sensitive monitoring of multiple analytes, and in research of selected biomolecular interactions related to Alzheimer's disease. The...
Preparation and Characterization of Complex Nanoparticles by Field-Flow Fractionation and Advanced Spectroscopic Methods
Kotouček, Jan ; Krejsek,, Jan (referee) ; Skládal, Petr (referee) ; Turánek,, Jaroslav (advisor)
Liposomes are versatile biocompatible and biodegradable carriers for a variety of medical applications. As the first nanoparticles, they have been approved for pharmaceutical use so far, and many liposome-based preparations are in clinical trials. Classical methods of liposome preparation represent potential limitations in technology transfer from laboratory to industrial scale. New, microfluidic techniques overcome these limitations and offer new possibilities for controlled, continuous preparation of liposomal particles in a laboratory and industrial scale. An important element in the development of new nanoparticle systems is their complex characterization and purification. In addition to the established chromatographic techniques, the Field flow fractionation technique, in particular the Asymmetrical flow Field-flow fractionation, is described. This relatively new technique in conjunction with the MALS/DLS/DAD-UV/dRI online detectors enables the purification and characterization of complex samples. The main advantage of this technique lies in the possibility of separation under native conditions, which plays an important role in the separation of biopolymers in particular. Separation in the “empty” channel then eliminates sample degradation due to unwanted interactions at the stationary phase-sample interface. The theoretical part of this thesis describes the possibilities of preparation, modification, and characterization of liposomal nanoparticles. For this purpose, optical methods based on dynamic light scattering, multi-angle dynamic light scattering and nanoparticle tracking analysis techniques are described, as well as a non-optical method using "particle by the particle" analysis, tunable resistive pulse sensing method. A separate chapter of the theoretical part is dedicated to the technique Asymmetrical flow Field-flow fractionation in connection with the above-mentioned detectors. Important results associated with this work are summarized in the attached scientific paper, together with the result summaries and the author's contributions.

National Repository of Grey Literature : 18 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.