National Repository of Grey Literature 3 records found  Search took 0.00 seconds. 
The detection of protein covalent complexes with DNA using fluorescent microscopy
Melicharová, Růžena ; Jirkovská, Anna (advisor) ; Novotná, Eva (referee)
Charles University Faculty of Pharmacy in Hradec Králové Department od Biochemical Sciences Candidate: Růžena Melicharová Supervisor: PharmDr. Anna Jirkovská, Ph.D. Title of thesis: The detection of protein covalent complexes with DNA using fluorescent microscopy Anthracycline antibiotics are present one of the most potent antineoplastic drugs. The mechanism of their action is complex. They are reported to intercalate to DNA, form DNA adducts and interact with topoisomerase II (TopII) as its poisons. Catalytic cycle of TopII is interrupted when anthracyclines stabilize the covalent complex of DNA and TopII and that causes cell damage. However, using of anthracyclines is limited by several adverse effects e. g. myelotoxicity and cardiotoxicity. The mechanism of cardiotoxicity is still unclear but may be associated with poisoning of the TopIIβ isoform. Unlike the TopIIα, TopIIβ is present mostly in quiescent cells as cardiomyocytes. Furthermore, the only clinically approved cardioprotective drug dexrazoxane belongs to TopII catalytic inhibitors. Nevertheless, the details of the dexrazoxane-afforded protection are unclear. This thesis was aimed to optimize the TARDIS (trapped in agarose DNA immunostaining) assay to detect and quantify covalent cleavage complexes, compare different ways for analysis of...
The detection of protein covalent complexes with DNA using fluorescent microscopy
Melicharová, Růžena ; Jirkovská, Anna (advisor) ; Novotná, Eva (referee)
Charles University Faculty of Pharmacy in Hradec Králové Department od Biochemical Sciences Candidate: Růžena Melicharová Supervisor: PharmDr. Anna Jirkovská, Ph.D. Title of thesis: The detection of protein covalent complexes with DNA using fluorescent microscopy Anthracycline antibiotics are present one of the most potent antineoplastic drugs. The mechanism of their action is complex. They are reported to intercalate to DNA, form DNA adducts and interact with topoisomerase II (TopII) as its poisons. Catalytic cycle of TopII is interrupted when anthracyclines stabilize the covalent complex of DNA and TopII and that causes cell damage. However, using of anthracyclines is limited by several adverse effects e. g. myelotoxicity and cardiotoxicity. The mechanism of cardiotoxicity is still unclear but may be associated with poisoning of the TopIIβ isoform. Unlike the TopIIα, TopIIβ is present mostly in quiescent cells as cardiomyocytes. Furthermore, the only clinically approved cardioprotective drug dexrazoxane belongs to TopII catalytic inhibitors. Nevertheless, the details of the dexrazoxane-afforded protection are unclear. This thesis was aimed to optimize the TARDIS (trapped in agarose DNA immunostaining) assay to detect and quantify covalent cleavage complexes, compare different ways for analysis of...
The detection of protein covalent complexes with DNA using fluorescent microscopy
Melicharová, Růžena ; Jirkovská, Anna (advisor) ; Novotná, Eva (referee)
Charles University Faculty of Pharmacy in Hradec Králové Department od Biochemical Sciences Candidate: Růžena Melicharová Supervisor: PharmDr. Anna Jirkovská, Ph.D. Title of thesis: The detection of protein covalent complexes with DNA using fluorescent microscopy Anthracycline antibiotics are present one of the most potent antineoplastic drugs. The mechanism of their action is complex. They are reported to intercalate to DNA, form DNA adducts and interact with topoisomerase II (TopII) as its poisons. Catalytic cycle of TopII is interrupted when anthracyclines stabilize the covalent complex of DNA and TopII and that causes cell damage. However, using of anthracyclines is limited by several adverse effects e. g. myelotoxicity and cardiotoxicity. The mechanism of cardiotoxicity is still unclear but may be associated with poisoning of the TopIIβ isoform. Unlike the TopIIα, TopIIβ is present mostly in quiescent cells as cardiomyocytes. Furthermore, the only clinically approved cardioprotective drug dexrazoxane belongs to TopII catalytic inhibitors. Nevertheless, the details of the dexrazoxane-afforded protection are unclear. This thesis was aimed to optimize the TARDIS (trapped in agarose DNA immunostaining) assay to detect and quantify covalent cleavage complexes, compare different ways for analysis of...

See also: similar author names
2 Melicharová, Radka
2 Melicharová, Romana
Interested in being notified about new results for this query?
Subscribe to the RSS feed.