National Repository of Grey Literature 5 records found  Search took 0.01 seconds. 
Mechanisms of DNA repair in the moss Physcomitrella patens
Holá, Marcela ; Angelis, Karel (advisor) ; Bříza, Jindřich (referee) ; Fajkus, Jiří (referee)
Over the course of an organism's life, its genome is exposed to endogenous and exogenous chemical, physical and biological agents - genotoxins. These genotoxins alter its basic structural components - sugar residues, phosphodiester bonds, and nitrogenous bases. Organisms have therefore evolved a plethora of different strategies to both repair DNA lesions and maintain genomic stability. These DNA repair pathways are linked with several other cell pathways, including chromatin remodelling, DNA replication, transcription, cell cycle control, apoptosis - programmed cell death (PCD), thereby providing a coordinated cellular response to DNA damage. Biochemical mechanisms of DNA repair are relatively well understood in yeast and mammals, however, far less so in plants. While these repair mechanisms are evolutionary conserved, significant differences still remain. Therefore, further investigation is required. This thesis summarises the introduction of a novel plant model - the moss, Physcomitrella patens (Physcomitrella). As a haploid gametophyte with unique characteristics of high frequency of homologous recombination (HR), and apical growth of filaments, it is an ideal organism to study DNA repair in plants. Previous research on Physcomitrella regarding mechanisms of DNA lesion repair induced by...
Mechanisms of DNA repair in the moss Physcomitrella patens
Holá, Marcela ; Angelis, Karel (advisor) ; Bříza, Jindřich (referee) ; Fajkus, Jiří (referee)
Over the course of an organism's life, its genome is exposed to endogenous and exogenous chemical, physical and biological agents - genotoxins. These genotoxins alter its basic structural components - sugar residues, phosphodiester bonds, and nitrogenous bases. Organisms have therefore evolved a plethora of different strategies to both repair DNA lesions and maintain genomic stability. These DNA repair pathways are linked with several other cell pathways, including chromatin remodelling, DNA replication, transcription, cell cycle control, apoptosis - programmed cell death (PCD), thereby providing a coordinated cellular response to DNA damage. Biochemical mechanisms of DNA repair are relatively well understood in yeast and mammals, however, far less so in plants. While these repair mechanisms are evolutionary conserved, significant differences still remain. Therefore, further investigation is required. This thesis summarises the introduction of a novel plant model - the moss, Physcomitrella patens (Physcomitrella). As a haploid gametophyte with unique characteristics of high frequency of homologous recombination (HR), and apical growth of filaments, it is an ideal organism to study DNA repair in plants. Previous research on Physcomitrella regarding mechanisms of DNA lesion repair induced by...
The dietary habits in terms of phylogenies of Homo sapiens sapiens
HOLÁ, Marcela
This Bachelor's thesis on the synthesis of literature, is attempting to create an overview of our human ancestor's dietary habits. The time frame is from the oldest representative of the hominoid family, genus Ardipithecus ramidus, to neolithic Homo sapiens.This will show the connection between the changing food spectrum and the phylogeny of our species.
A study of variability of capsid protein genes of Radish mosaic virus
HOLÁ, Marcela
The part of RNA2 genome segment of several isolates of Radish mosaic virus (RaMV) including capsid protein genes was sequenced. Variability of capsid protein genes among the isolates of Radish mosaic virus was studied.

See also: similar author names
5 HOLÁ, Marcela
4 HOLÁ, Markéta
10 HOLÁ, Michaela
16 HOLÁ, Miroslava
2 HOLÁ, Monika
3 Holá, M.
5 Holá, Magda
2 Holá, Mariana
4 Holá, Marie
4 Holá, Markéta
12 Holá, Martina
10 Holá, Michaela
16 Holá, Miroslava
3 Holá, Mlada
Interested in being notified about new results for this query?
Subscribe to the RSS feed.