National Repository of Grey Literature 24 records found  beginprevious14 - 23next  jump to record: Search took 0.00 seconds. 
Calculation of Interactions of Graphene/SiO2 System with Adsorbed Atoms and Molecules using DFT Methods
Nezval, David ; Friák, Martin (referee) ; Bartošík, Miroslav (advisor)
This master's thesis studies the electronic properties changes of graphene caused by substrate SiO2, adsorbed molecules of water and atoms of gallium. There are tested different geometrical configurations of these systems and consequently calculated band structures to derive the changes of the electronic properties: the doping effect and band gap opening of graphene layer.
Qantum-mechanical study of structural stability of Ni4N allotropes
Hemzalová, P. ; Friák, Martin ; Šob, Mojmír ; Neugebauer, J.
Parameter-free density functional theory (DFT) calculations of Ni4N in eight crystallographic phases were performed using the pseudopotential approach implemented in the VASP code; the exchange-correlation energy was evaluated within the generalized gradient approximation (GGA). In agreement with experiments, the cubic structure with Pearson symbol cP5, space group Pm-3m (221), has been found to be the most stable. It is also the only thermodynamically stable structure at T=0 K with respect to decomposition into elemental Ni crystal and N2 gas phase. We determine structural, thermodynamic, electronic, magnetic and elastic properties of all eight Ni4N allotropes studied. The thermodynamic stability and bulk modulus is found to be anti-correlated. For the cubic allotropes, we predict a complete set of single-crystalline elastic constants, directional dependence of the single-crystalline Young modulus and homogenized polycrystalline elastic moduli.
Investigating ground state of nickel nitrides NiN and Ni2N with the help of quantum-mechanical calculations
Elstnerová, P. ; Friák, Martin ; Šob, Mojmír ; Neugebauer, J.
We have employed quantum mechanical calculations to identify ground-state structures of nickel nitrides NiN and Ni2N for which experimental data are lacking. In total 19 crystalline phases have been calculated for which not only thermodynamic but also structural and selected elastic properties have been determined. Employing density functional theory (DFT) methods, the total energies were calculated by means of a pseudopotential approach implemented in the VASP code and selected states were benchmarked by the full-potential linearized augmented plane wave (FP-LAPW) method implemented in the WIEN2k code. For the exchange-correlation energy the generalized gradient approximation (GGA) has been used.
Magnetism and phase stability of Ni3Al structures
Legut, Dominik ; Friák, Martin ; Šob, Mojmír ; Fiala, J.
Phase stability, magnetic behavior and theoretical strength of Ni3Al is studied by means of first-principles electronic structure calculations. Total energy calculations are performed along the trigonal and tetragonal deformation paths. The phase boundaries between the ferromagnetic and non-magnetic phase are determined.
Nanoindentation and theoretical strength in metals and intermetallics
Šob, Mojmír ; Legut, Dominik ; Friák, Martin ; Fiala, J. ; Vitek, V. ; Hafner, J.
The present contribution gives an account of applications of quantum-mechanical (first-principles) electronic structure calculations to the problem of theoretical strength in metals and intermetallics. First, we briefly describe the way of simulating the tensile test and the electronic structure calculational method. Then we discuss the theoretical strength values in a number of elemental metals and intermetallics and compare them with available experimental data, both from measurements on whiskers and from nanoindentation experiments.
Structure and magnetism of iron and iron overlayers from the first principles
Friák, Martin ; Šob, Mojmír ; Vitek, V.
A detailed theoretical study of magnetic behavior of iron along the bcc fcc (Bain's) transformation paths at various atomic volumes is presented. The total energies are calculated by spin polarized full potential LAPW method and are displayed in contour plots as functions of tetragonal distortion c/a and volume; borderlines between various magnetic phases are shown. Stability of tetragonal magnetic phases of fl Fe is discussed. The calculated phase boundaries are used to predict the lattice parameters and magnetic states of iron overlayers on various (001) substrates.
Ab initio simulation of three-axial deformation of perfect iron crystal
Černý, M. ; Šandera, P. ; Pokluda, J. ; Friák, Martin ; Šob, Mojmír
Ab initio electronic structure calculations of ideal strength, bulk modulus and equilibrium lattice parameter of iron in the body-centered-cubic lattice under three-axial tension are performed using the linear muĆn-tin orbitals method in atomic sphere ap proximation (LMTO-ASA) and the full-potential linearized augmented plane waves method (FLAPW). Magnetic ordering was taken into account by means of spin-polarized calculation. Two exchange-correlation energy approximations were employed, namely the local (spin) den-sity approximation (LDA) and the generalized gradient approximation (GGA). Computed values are compared with experimental data.
Ab initio simulation of a tensile test in iron
Friák, Martin ; Šob, Mojmír ; Vitek, V.
A tensile test in ferromagnetic and nonmagnetic iron is simulated by ab initio electronic structure calculations using all-electron full potential linearized augmented plane wave method (FLAPW) within generalized gradient approximation (GGA). The theoretical tensile strength of ferromagnetic iron for [001] loading is determined and compared with that of other materials. The magnetic behavior of iron under tensile loading is studied in detail and compared with results for triaxial loading.
The effect of spin-orbit coupling on energetics of tungsten and lead along the trigonal displacive phase transformation path
Legut, Dominik ; Friák, Martin ; Šob, Mojmír
Total energy calculations using full potential linearised augmented plane wave (FLAPW) method were performed along a trigonal displacive phase transformation path in tungsten and lead. In case of lead, we have found a significant influence of spin-orbit (SO) coupling on the total energy profile. Symmetry-dictated and other extrema of the total energy along the deformation path were analyzed. Total energy calculations show that all higher-energy cubic structures studied are locally unstable with respect to trigonal deformation. The elastic constants are calculated and compared with experimental data.
Application of first-principles calculations in phase diagram calculations
Vřešťál, J. ; Houserová, J. ; Friák, Martin ; Šob, Mojmír
Methods for applying first principles calculations results for construction of phase diagrams are discussed. Calculated quantities useful for phase diagram calculations (equilibrium volumes, energy of formation) are compared with experimentally measured ones. New model for complex intermetallic phase (Cr-Fe sigma-phase), presented recently, is compared with existing model of that phase in phase diagram calculation.

National Repository of Grey Literature : 24 records found   beginprevious14 - 23next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.