National Repository of Grey Literature 4 records found  Search took 0.00 seconds. 
Fatigue properties of UFG Ti for biomedicine applications
Dobeš, Ondřej ; Pantělejev, Libor (referee) ; Fintová, Stanislava (advisor)
Titanium is thanks to its high corrosion resistance and biocompatibility widely used in medicine. Ti alloys are used due to their superior mechanical properties instead of pure Ti for load carrying components. Ti alloys are often alloyed with elements which are toxic for human body and further increase cost of Ti products. Main focus of current development is to create pure Ti with better mechanical properties. It can be done by reducing grain size by processes based on severe plastic deformation. The aim of this work is to evaluate fatigue properties as well as fatigue crack initiation and propagation mechanism of Ti grade 2 with the ultrafine grained structure. After microstructure analysis, fatigue tests with symmetrical loading were executed. Fracture surfaces of ultrafine grained Ti grade 2 were observed after fatigue tests for identification of failure mechanism. Results were compared with those for course-grained Ti grade 2.
Thermomechanical fatigue of austenitic stainless steels
Dobeš, Ondřej ; Petráš, Roman (referee) ; Horník, Vít (advisor)
The aim of this bachelor thesis was to study the influence of termomechanical fatigue with dwells in loading cycles on material response as well as damage mechanism. Austenitic stainless steel Sanicro 25 was subjected to in-phase and out-of-phase thermomechanical fatigue (TMF) loading conditions with different amplitudes of mechanical strain in the temperature range 250 to 700 °C. The mechanism of the damage was investigated by means of scanning electron microscope equipped with focused ion beam (FIB) and electron backscatter diffraction (EBSD). Different mechanisms of the fatigue crack initiation were observed in in-phase and out-of-phase TMF cyclic loading. The effect of the type of loading on the damage mechanism and fatigue life is discussed.
Fatigue properties of UFG Ti for biomedicine applications
Dobeš, Ondřej ; Pantělejev, Libor (referee) ; Fintová, Stanislava (advisor)
Titanium is thanks to its high corrosion resistance and biocompatibility widely used in medicine. Ti alloys are used due to their superior mechanical properties instead of pure Ti for load carrying components. Ti alloys are often alloyed with elements which are toxic for human body and further increase cost of Ti products. Main focus of current development is to create pure Ti with better mechanical properties. It can be done by reducing grain size by processes based on severe plastic deformation. The aim of this work is to evaluate fatigue properties as well as fatigue crack initiation and propagation mechanism of Ti grade 2 with the ultrafine grained structure. After microstructure analysis, fatigue tests with symmetrical loading were executed. Fracture surfaces of ultrafine grained Ti grade 2 were observed after fatigue tests for identification of failure mechanism. Results were compared with those for course-grained Ti grade 2.
Thermomechanical fatigue of austenitic stainless steels
Dobeš, Ondřej ; Petráš, Roman (referee) ; Horník, Vít (advisor)
The aim of this bachelor thesis was to study the influence of termomechanical fatigue with dwells in loading cycles on material response as well as damage mechanism. Austenitic stainless steel Sanicro 25 was subjected to in-phase and out-of-phase thermomechanical fatigue (TMF) loading conditions with different amplitudes of mechanical strain in the temperature range 250 to 700 °C. The mechanism of the damage was investigated by means of scanning electron microscope equipped with focused ion beam (FIB) and electron backscatter diffraction (EBSD). Different mechanisms of the fatigue crack initiation were observed in in-phase and out-of-phase TMF cyclic loading. The effect of the type of loading on the damage mechanism and fatigue life is discussed.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.