Národní úložiště šedé literatury Nalezeno 4 záznamů.  Hledání trvalo 0.02 vteřin. 
Fatigue resistance and mechanisms of the fatigue damage in materials for high temperatures
Petráš, Roman ; Kohout,, Jan (oponent) ; Weidner, Anja (oponent) ; Polák, Jaroslav (vedoucí práce)
Superaustenitic stainless 22Cr25NiWCoCu steel designed for high temperature applications in power generation industry was investigated in terms of low cycle fatigue at room and elevated temperature. Individual specimens were subjected to different loading procedures in order to study the material response along with the mechanism of fatigue damage. Cyclic hardening/softening curves, Coffin-Manson and cyclic stress-strain curves were evaluated. Life-time behavior for various types of loading procedures was discussed with respect to the effective damage mechanisms developed under specific loading conditions. Standard isothermal low cycle fatigue tests at room and elevated temperature were conducted. Hysteresis loops recorded during cycling were analyzed by means of generalized statistical theory of hysteresis loop. The probability density distribution function of the internal critical stresses and its evolution during cycling straining was derived for different strain amplitudes. Evolution of the surface relief along with the internal dislocation arrangement for both temperatures was assessed in relation to the development of the probability density function of internal critical stresses. Surface relief evolution using SEM equipped with FIB revealed the early fatigue crack formation. Cyclic loading at room temperature resulted in the localization of the cyclic plastic strain into persistent slip bands and formation of surface persistent slip marking consisting of extrusions and intrusions. Deepening of an intrusion leads to the initiation of the fatigue crack from the tip of the deepest intrusion. Distinctive mechanism of the early crack formation was found in test at elevated temperature where the effect of environment is crucial. Rapid oxidation of the grain boundaries and subsequent cracking of the oxidized grain boundaries represent effective mechanisms of the nucleation of I-stage fatigue crack. Additional 10 minute tensile dwells implemented into the loading cycle led to the internal damage evolution. To reveal internal damage the longitudinal cross-sections parallel to the stress axis of the tested specimen were produced. The crack paths and their relation to the grain and twin boundaries were studied using electron back-scattered diffraction (EBSD) technique. The influence of dwells introduced in the loading cycle on fatigue life is assessed in relation to the evolution of the surface relief and internal damage. Specimens were also exposed to more complex loading procedures where the load along with the temperature varies with time simultaneously. In-phase and out-of-phase type thermomechanical fatigue (TMF) tests with or without dwells were conducted. Rapid cyclic hardening was observed in all tests regardless of the strain amplitude applied while tendency to saturation was found primarily in out-of-phase loading with/without dwells. Investigation of the surface relief by means of SEM along with FIB cutting revealed the preferential oxidization and cracking of the grain boundaries perpendicular to the loading axis. Dwells implemented in maximum tension resulted in the enlargement of the plastic strain amplitude and to the additional creep damage in the form of internal cracks. Intergranular crack propagation was observed for in-phase cycling with/without dwells. Damage evolution in out-of-phase cycling was found to be principally similar for straining with and without dwell.
Crack initiation in austenitic stainless steel sanicro 25 subjected to thermomechanical fatigue
Petráš, Roman ; Škorík, Viktor ; Polák, Jaroslav
Thermomechanical fatigue experiments were performed with austenitic stainless Sanicro 25 steel. Several amplitudes of mechanical strain in a wide temperature interval (250-700 °C) were applied to the specimens. Mechanical response was recorded and fatigue lives were obtained. Scanning electron microscopy combined with FIB technique was used to study the mechanism of crack initiation in in-phase and in out-of-phase thermomechanical cycling. Different mechanisms of the crack initiation were found in these two types of loading. During in-phase loading fatigue cracks start in grain boundaries by cracking of the oxide. Cracks grew preferentially along grain boundaries which resulted in rapid crack initiation and low fatigue life. In out-of-phase loading multiple cracks perpendicular to the stress axis developed only after sufficiently thick oxide layer was formed and cracked in low temperature loading half-cycle. The cracks in oxide allowed localized repeated oxidation and finally also cracking. The cracks grow transgranularly and result in longer fatigue life.
Termomechanická únava austenitických ocelí
Dobeš, Ondřej ; Petráš, Roman (oponent) ; Horník, Vít (vedoucí práce)
Cílem bakalářské práce bylo zkoumání vlivu termomechanické únavy s prodlevami v cyklech na mechanismy poškození a odezvu materiálu. Korozivzdorná austenitická ocel Sanicro 25 byla podrobena zatěžovacími zkouškami termomechanické únavy ve fázi a mimo fázi rozdílnými amplitudami celkové deformace v rozmezí teplot 250 až 700 °C. Mechanismy poškození byly zkoumány rastrovacím elektronovým mikroskopem vybaveným fokusovaným iontovým paprskem (FIB) a technikou difrakce zpětně odražených elektronů (EBSD). Různé mechanismy iniciace únavových trhlin byly pozorovány pro zatěžování ve fázi a mimo fázi. Je diskutován vliv druhu zatěžování na mechanismus poškození a únavovou životnost.
Analysis of cyclic plasticity of fatigued nickel based superalloys at elevated temperatures
Petrenec, Martin ; Tobiáš, Jiří ; Polák, Jaroslav ; Šmíd, Miroslav ; Chlupová, Alice ; Petráš, Roman
Cyclic strain controlled multiple step tests have been performed on cylindrical specimens of cast Inconel 738LC superalloy at 23 and 800 °C and Inconel 792-5A superalloy at 800 °C in laboratory atmosphere. The effect of temperature on the cyclic stress-strain response characterized by internal and effective cyclic stress components and on the dislocation arrangement has been studied. The evolution of the effective and internal stress components and effective elastic moduli were derived from the hysteresis loops analyzed according to the statistical theory of the hysteresis loop. Cyclic hardening/softening curves and shortened cyclic stress-strain curves were obtained at all temperatures in both superalloys. The shortened cyclic stress-strain curves (CSSCs) can be fitted by power law at all temperatures and for both materials. They are shifted to lower stresses with increasing temperature. The CSSC of Inconel 792-5A is shifted to higher stress amplitude in comparison with that of Inconel 738LC due to different number and type of precipitates. Observation of dislocation structures by TEM revealed cyclic strain localization into persistent slip bands. Cyclic stress-strain response is compared at all temperatures in both superalloys and discussed in relation to the changes of internal and effective stress components and microstructural parameters of the material. Higher stress response of the Inconel 792-5A than of the Inconel 738LC superalloy at 800°C is due to higher effective stresses of respective γ´ phases.

Viz též: podobná jména autorů
1 Petráš, René,
Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.