National Repository of Grey Literature 3 records found  Search took 0.00 seconds. 
Qantum-mechanical study of structural stability of Ni4N allotropes
Hemzalová, P. ; Friák, Martin ; Šob, Mojmír ; Neugebauer, J.
Parameter-free density functional theory (DFT) calculations of Ni4N in eight crystallographic phases were performed using the pseudopotential approach implemented in the VASP code; the exchange-correlation energy was evaluated within the generalized gradient approximation (GGA). In agreement with experiments, the cubic structure with Pearson symbol cP5, space group Pm-3m (221), has been found to be the most stable. It is also the only thermodynamically stable structure at T=0 K with respect to decomposition into elemental Ni crystal and N2 gas phase. We determine structural, thermodynamic, electronic, magnetic and elastic properties of all eight Ni4N allotropes studied. The thermodynamic stability and bulk modulus is found to be anti-correlated. For the cubic allotropes, we predict a complete set of single-crystalline elastic constants, directional dependence of the single-crystalline Young modulus and homogenized polycrystalline elastic moduli.
Study of Influence of Segregated Impurities on Magnetism of Grain Boundaries and Free Surfaces in FCC Nickel and Cobalt
Všianská, Monika ; Vémolová, H. ; Šob, Mojmír
We present an ab initio study of segregation of 12 nonmagnetic sp impurities (Al, Si, P, S, Ga, Ge, As, Se, In, Sn, Sb and Te) at the Sigma5(210) grain boundary (GB) and (210) free surface (FS) in ferromagnetic fcc nickel and cobalt. We analyze their effect on structure, magnetic and mechanical properties. We determine the preferred segregation sites of the impurity atoms, their segregation enthalpies and strengthening/embrittling energies with their decomposition into the chemical and mechanical components. In this contribution, we focused on the influence of segregated impurities on the magnetic moments of neighbouring atoms, the changes in the density of states and why the magnetically dead layers may be present in nickel but not in the cobalt.
Strength and magnetism of Mn-Pt nanocomposites
Káňa, Tomáš ; Šob, Mojmír
Using ab initio electronic structure calculations, we have analysed Mn atoms dissolved in a platinum matrix, forming thus intermetallics MnPt3, MnPt7 and MnPt15 that can be considered as prototypes of natural Mn–Pt nanocomposites. On the whole, manganese addition makes the resulting Mn–Pt compound softer but increases its resistance to shape deformation. With increasing Mn content, both tensile and compressive theoretical strength is enhanced. In agreement with experiment, our calculations confirm the antiferromagnetic (AFM) ground state of the MnPt7 structure with spins directions altering along the [100] crystallographic direction (AFM [100]). In addition, we have proposed and studied three prototypes of linear MnPt15 nanocomposites consisting of Mn nanochains in the Pt matrix. Again, AFM [100] ordering was found in the ground state of MnPt15.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.