Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.01 vteřin. 
Correlation and Spiral Microscopy using a Spatial Light Modulation
Bouchal, Petr ; Čižmár,, Tomáš (oponent) ; Jákl, Petr (oponent) ; Petráček, Jiří (vedoucí práce)
The doctoral thesis presents a review of the main research results obtained in the course of doctoral studies. In the introductory part, the motivation and technical support for the planned research are discussed in connection with research activities of the group of Experimental Biophotonics at the Institute of Physical Engineering, Brno University of Technology. The scientific part of the doctoral thesis is divided into two main parts devoted to new imaging concepts and modifications of current experiments to extend their application potential. Achieved results support the research development in the areas of correlation and spiral microscopy, utilizing a spatial light modulation as a key experimental technique. Among the new imaging concepts, the correlation imaging is examined under conditions of partial spatial and temporal coherence of light. Subsequently, the principles of singular optics and nondiffracting propagation of light are advantageously implemented in correlation, holographic and optical microscopy, resulting in advanced imaging techniques and holographic reconstructions. Specifically, the vortex and nondiffracting beams and the self-imaging effects are successfully deployed using either optical or digital tools and gradually applied to 3D spiral imaging ensuring the edge contrast enhancement or axial localization of microobjects by the rotating point spread function. The results obtained by the theoretical analysis and the experimental testing of the proposed imaging modalities are also presented. In the technical part of the doctoral thesis, up-to-date imaging configurations aided by a spatial light modulator are optimized, allowing the wide-field correlation imaging and achromatic high-resolution imaging by a programmable diffractive lens. In the correlation imaging, the enhanced field of view is achieved by deploying a relay optical system in standard experiments, while achromatic correction of diffractive lenses is implemented by a specially designed refractive corrector. Using birefringence of liquid crystal molecules of light modulating devices, a new phase-shifting technique is proposed and tested in polarization adapted Mirau interferometer. Acquired experimental know-how is fully exploited in the design of multimodal microscope working with different imaging modes implemented using an add-on module connected to standard microscope.
Correlation and Spiral Microscopy using a Spatial Light Modulation
Bouchal, Petr ; Čižmár,, Tomáš (oponent) ; Jákl, Petr (oponent) ; Petráček, Jiří (vedoucí práce)
The doctoral thesis presents a review of the main research results obtained in the course of doctoral studies. In the introductory part, the motivation and technical support for the planned research are discussed in connection with research activities of the group of Experimental Biophotonics at the Institute of Physical Engineering, Brno University of Technology. The scientific part of the doctoral thesis is divided into two main parts devoted to new imaging concepts and modifications of current experiments to extend their application potential. Achieved results support the research development in the areas of correlation and spiral microscopy, utilizing a spatial light modulation as a key experimental technique. Among the new imaging concepts, the correlation imaging is examined under conditions of partial spatial and temporal coherence of light. Subsequently, the principles of singular optics and nondiffracting propagation of light are advantageously implemented in correlation, holographic and optical microscopy, resulting in advanced imaging techniques and holographic reconstructions. Specifically, the vortex and nondiffracting beams and the self-imaging effects are successfully deployed using either optical or digital tools and gradually applied to 3D spiral imaging ensuring the edge contrast enhancement or axial localization of microobjects by the rotating point spread function. The results obtained by the theoretical analysis and the experimental testing of the proposed imaging modalities are also presented. In the technical part of the doctoral thesis, up-to-date imaging configurations aided by a spatial light modulator are optimized, allowing the wide-field correlation imaging and achromatic high-resolution imaging by a programmable diffractive lens. In the correlation imaging, the enhanced field of view is achieved by deploying a relay optical system in standard experiments, while achromatic correction of diffractive lenses is implemented by a specially designed refractive corrector. Using birefringence of liquid crystal molecules of light modulating devices, a new phase-shifting technique is proposed and tested in polarization adapted Mirau interferometer. Acquired experimental know-how is fully exploited in the design of multimodal microscope working with different imaging modes implemented using an add-on module connected to standard microscope.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.