Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.00 vteřin. 
Design of nuclear ceramic materials with enhanced thermal conductivity
Roleček, Jakub ; Katovský, Karel (oponent) ; Salamon, David (vedoucí práce)
Uranium dioxide (UO2) is the most common fuel material used in commercial nuclear reactors. The main disadvantage of UO2 is its low thermal conductivity, and large amount of heat generated during the fission in nuclear reactor creates a large temperature gradient in the UO2 fuel pellet. This temperature gradient induces large thermal stress, which leads to fuel pellet cracking. These cracks help to the release of fission product gases after high burnup. The formation of cracks and increase fission gas generation leads to a considerable reduction of fuel pellet durability. This thesis deals with the issue of increasing the thermal conductivity of the UO2 nuclear fuel on model material (CeO2). In this work are studied similarities of the CeO2 and UO2 behavior during conventional sintering and spark plasma sintering. The concept of thermal conductivity enhancement deal with incorporation of high thermal conductivity material – silicon carbide (SiC) into the CeO2 pellets. Silicon carbide is expected to increase the heat flow out of the fuel pellet, and thus increasing the CeO2 thermal conductivity. Similarities of SiC behavior in the CeO2 matrix and SiC behavior in the UO2 matrix reported in literature are also discussed in this work.
Design of nuclear ceramic materials with enhanced thermal conductivity
Roleček, Jakub ; Katovský, Karel (oponent) ; Salamon, David (vedoucí práce)
Uranium dioxide (UO2) is the most common fuel material used in commercial nuclear reactors. The main disadvantage of UO2 is its low thermal conductivity, and large amount of heat generated during the fission in nuclear reactor creates a large temperature gradient in the UO2 fuel pellet. This temperature gradient induces large thermal stress, which leads to fuel pellet cracking. These cracks help to the release of fission product gases after high burnup. The formation of cracks and increase fission gas generation leads to a considerable reduction of fuel pellet durability. This thesis deals with the issue of increasing the thermal conductivity of the UO2 nuclear fuel on model material (CeO2). In this work are studied similarities of the CeO2 and UO2 behavior during conventional sintering and spark plasma sintering. The concept of thermal conductivity enhancement deal with incorporation of high thermal conductivity material – silicon carbide (SiC) into the CeO2 pellets. Silicon carbide is expected to increase the heat flow out of the fuel pellet, and thus increasing the CeO2 thermal conductivity. Similarities of SiC behavior in the CeO2 matrix and SiC behavior in the UO2 matrix reported in literature are also discussed in this work.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.