Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.01 vteřin. 
Spin wave excitation and propagation in magnonic crystals prepared by focused ion beam direct writing
Křižáková, Viola ; Olejník,, Kamil (oponent) ; Urbánek, Michal (vedoucí práce)
Paramagnetic Ni-stabilized fcc Fe thin films epitaxially grown on Cu(100) are known for their capability to undergo ion-beam-induced phase transformation into ferromagnetic bcc phase. To bring these metastable films closer to the application, a Cu(100) substrate can be further substituted by Si(100) with a Cu(100) buffer layer. With the use of a focused ion beam, magnetic properties of the films can be locally tailored and modulated. Moreover, this alternative approach to the preparation of media suitable for spin-wave guidance provides patterning possibilities unattainable by conventional lithography techniques. Magnetic structures prepared in this way are studied by all-electrical spin-wave spectroscopy. This thesis covers the entire process from the metastable thin film growth, through the patterning, to structural studies and static and dynamic magnetic characterization. A broadband ferromagnetic resonance and propagating spin wave spectroscopy experiments are performed on focused-ion-beam-transformed continuous layers and microstructures. Microscale coplanar waveguides are used for inductive excitation and detection of spin waves with defined wavevectors. Magnetic properties such as saturation magnetization and damping are extracted from the ferromagnetic resonance measurements and characteristics of the propagating modes such as spin-wave decay length or group velocity are studied and compared with common ferromagnetic materials.
Spin wave excitation and propagation in magnonic crystals prepared by focused ion beam direct writing
Křižáková, Viola ; Olejník,, Kamil (oponent) ; Urbánek, Michal (vedoucí práce)
Paramagnetic Ni-stabilized fcc Fe thin films epitaxially grown on Cu(100) are known for their capability to undergo ion-beam-induced phase transformation into ferromagnetic bcc phase. To bring these metastable films closer to the application, a Cu(100) substrate can be further substituted by Si(100) with a Cu(100) buffer layer. With the use of a focused ion beam, magnetic properties of the films can be locally tailored and modulated. Moreover, this alternative approach to the preparation of media suitable for spin-wave guidance provides patterning possibilities unattainable by conventional lithography techniques. Magnetic structures prepared in this way are studied by all-electrical spin-wave spectroscopy. This thesis covers the entire process from the metastable thin film growth, through the patterning, to structural studies and static and dynamic magnetic characterization. A broadband ferromagnetic resonance and propagating spin wave spectroscopy experiments are performed on focused-ion-beam-transformed continuous layers and microstructures. Microscale coplanar waveguides are used for inductive excitation and detection of spin waves with defined wavevectors. Magnetic properties such as saturation magnetization and damping are extracted from the ferromagnetic resonance measurements and characteristics of the propagating modes such as spin-wave decay length or group velocity are studied and compared with common ferromagnetic materials.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.