Národní úložiště šedé literatury Nalezeno 4 záznamů.  Hledání trvalo 0.02 vteřin. 
Metal Matrix Composites Prepared by Powder Metallurgy Route
Moravčík, Igor ; Lapin, Juraj (oponent) ; Skotnicová, Kateřina (oponent) ; Dlouhý, Ivo (vedoucí práce)
Conventionally, the alloy design, alloy production, and alloy selection are almost strictly confined to single element or one compound concept. Consequently, this alloy concept imposes a significant limit to the degrees of freedom in alloy’s composition and thus limits the development of special microstructure and properties. In the last decade, it has become particularly obvious that materials science and alloy engineering are still not fully explored due to an appearance of new class of alloys – usually called high entropy alloys (HEA). This exclusively new class of alloys caught significant scientific attention for the novelty of its approach to alloy design, as they do not contain a single base element, but rather at least 5 elements in very close atomic portions. In the recent years medium entropy alloys (MEA) appeared as a variant of HEAs with only three or four elements. The work is contributed to the research of feasibility of production of HEA and MEA alloys and composites by utilization of powder metallurgy (PM) manufacturing route, the combination of mechanical milling (MA) of elementary powders, followed by pressure or field assisted densification. Altogether three compositions have been studied: AlCoCrFeNiTi0.5, Co1.5Ni1.5CrFeTi0.5 and CoCrNi, as well as B4C metal matrix composite (MMC) with CoCrNi as matrix phase. Deep microstructural and mechanical analyses including transmission electron microscopy and tensile testing have been performed. During the whole study, the problems with the contamination of powders with oxygen have been observed, however the oxides formed relatively homogenous dispersion in all manufactured materials and they did not impair significant mechanical property reduction. AlCoCrFeNiTi0.5 exhibited relatively high hardness over 800 HV, but rather low ductility. The attempt has been made to improve the ductility with heat treatment procedure, but to no avail. The formation of in-situ TiC dispersion has been recorded, due to the utilization of carbon containing methanol as a process control agent during milling, that reacted with the present elemental Ti. In this manner metal matrix composite has been effectively produced. Additionally, the same procedure, the milling in the controlled amount of carbon containing medium, may be used also to produce other advanced composites with dispersion of in-situ formed TiC. On the other hand, CoCrNi alloy possessed very high tensile ductility (26%) and ultimate strength over 1000 MPa. Microstructure was composed of major FCC phase and BCC precipitates. The CoCrNi alloy has been due to the high ductility chosen as the best candidate for the subsequent production of metal matrix composites. The introduction of B4C resulted in the displacement reaction of Cr element with B4C, resulting in the formation of Cr5B3 boride phase. The composite possessed nano-grained microstructure and high tensile strength over 1400 MPa. However, the tensile ductility decreased to 1.9%. The AlCoCrFeNiTi0.5 alloy achieved the best combination of tensile ductility (4%) and remarkable strength over 1300 MPa, bearing pure FCC microstructure with extremely fine grain size. Therefore, the PM production route has proven to be a feasible way for the production of HEAs and MEAs, as well as HEA and MEA based metal matrix composites with remarkable combination of mechanical properties.
Vysoce entropické slitiny Cantorova typu zpevněné disperzí nitridů
Havlíček, Štěpán-Adam ; Moravčík, Igor (oponent) ; Hadraba, Hynek (vedoucí práce)
Vysoce-entropické slitiny (HEA – High Entropy Alloy) představují třídu konstrukčních materiálů založených na mísení pěti a více prvků v přibližně ekvi-atomárních poměrech. I přes neujasněnost jejich budoucího použití, představují HEA výrazně novou skupinu konstrukčních materiálů, kterým je v současné době věnována velká pozornost. Jednofá-zové HEA pevnostně selhávají při použití za zvýšených teplot. Zlepšení jejich vysokotep-lotní odolnosti bylo dosaženo vnesením disperze oxidů Al2O3 a Y2O3. Pro generalizaci pozitivního vlivu disperzí na mechanické vlastnosti za zvýšených teplot byly zvoleny čás-tice podobného charakteru. Jednalo se o disperzní částice nitridů: tvrdostně nekompatibil-ních AlN a tvrdostně kompatibilních BN. Částice byly rovnoměrně distribuovány uvnitř slitin pomocí mechanického legování a zhutněny metodou SPS (Spark Plasma Sintering). Nová konstrukční slitina dosáhla hustoty vyšší jak 96,5 % a přinesla přírůstek meze kluzu za laboratorní teploty až o 67 % a o 40 % za zvýšené teploty, při zachování homogenní distribuce vstupních prášku.
Vysoce entropické slitiny Cantorova typu zpevněné disperzí nitridů
Havlíček, Štěpán-Adam ; Moravčík, Igor (oponent) ; Hadraba, Hynek (vedoucí práce)
Vysoce-entropické slitiny (HEA – High Entropy Alloy) představují třídu konstrukčních materiálů založených na mísení pěti a více prvků v přibližně ekvi-atomárních poměrech. I přes neujasněnost jejich budoucího použití, představují HEA výrazně novou skupinu konstrukčních materiálů, kterým je v současné době věnována velká pozornost. Jednofá-zové HEA pevnostně selhávají při použití za zvýšených teplot. Zlepšení jejich vysokotep-lotní odolnosti bylo dosaženo vnesením disperze oxidů Al2O3 a Y2O3. Pro generalizaci pozitivního vlivu disperzí na mechanické vlastnosti za zvýšených teplot byly zvoleny čás-tice podobného charakteru. Jednalo se o disperzní částice nitridů: tvrdostně nekompatibil-ních AlN a tvrdostně kompatibilních BN. Částice byly rovnoměrně distribuovány uvnitř slitin pomocí mechanického legování a zhutněny metodou SPS (Spark Plasma Sintering). Nová konstrukční slitina dosáhla hustoty vyšší jak 96,5 % a přinesla přírůstek meze kluzu za laboratorní teploty až o 67 % a o 40 % za zvýšené teploty, při zachování homogenní distribuce vstupních prášku.
Metal Matrix Composites Prepared by Powder Metallurgy Route
Moravčík, Igor ; Lapin, Juraj (oponent) ; Skotnicová, Kateřina (oponent) ; Dlouhý, Ivo (vedoucí práce)
Conventionally, the alloy design, alloy production, and alloy selection are almost strictly confined to single element or one compound concept. Consequently, this alloy concept imposes a significant limit to the degrees of freedom in alloy’s composition and thus limits the development of special microstructure and properties. In the last decade, it has become particularly obvious that materials science and alloy engineering are still not fully explored due to an appearance of new class of alloys – usually called high entropy alloys (HEA). This exclusively new class of alloys caught significant scientific attention for the novelty of its approach to alloy design, as they do not contain a single base element, but rather at least 5 elements in very close atomic portions. In the recent years medium entropy alloys (MEA) appeared as a variant of HEAs with only three or four elements. The work is contributed to the research of feasibility of production of HEA and MEA alloys and composites by utilization of powder metallurgy (PM) manufacturing route, the combination of mechanical milling (MA) of elementary powders, followed by pressure or field assisted densification. Altogether three compositions have been studied: AlCoCrFeNiTi0.5, Co1.5Ni1.5CrFeTi0.5 and CoCrNi, as well as B4C metal matrix composite (MMC) with CoCrNi as matrix phase. Deep microstructural and mechanical analyses including transmission electron microscopy and tensile testing have been performed. During the whole study, the problems with the contamination of powders with oxygen have been observed, however the oxides formed relatively homogenous dispersion in all manufactured materials and they did not impair significant mechanical property reduction. AlCoCrFeNiTi0.5 exhibited relatively high hardness over 800 HV, but rather low ductility. The attempt has been made to improve the ductility with heat treatment procedure, but to no avail. The formation of in-situ TiC dispersion has been recorded, due to the utilization of carbon containing methanol as a process control agent during milling, that reacted with the present elemental Ti. In this manner metal matrix composite has been effectively produced. Additionally, the same procedure, the milling in the controlled amount of carbon containing medium, may be used also to produce other advanced composites with dispersion of in-situ formed TiC. On the other hand, CoCrNi alloy possessed very high tensile ductility (26%) and ultimate strength over 1000 MPa. Microstructure was composed of major FCC phase and BCC precipitates. The CoCrNi alloy has been due to the high ductility chosen as the best candidate for the subsequent production of metal matrix composites. The introduction of B4C resulted in the displacement reaction of Cr element with B4C, resulting in the formation of Cr5B3 boride phase. The composite possessed nano-grained microstructure and high tensile strength over 1400 MPa. However, the tensile ductility decreased to 1.9%. The AlCoCrFeNiTi0.5 alloy achieved the best combination of tensile ductility (4%) and remarkable strength over 1300 MPa, bearing pure FCC microstructure with extremely fine grain size. Therefore, the PM production route has proven to be a feasible way for the production of HEAs and MEAs, as well as HEA and MEA based metal matrix composites with remarkable combination of mechanical properties.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.