Národní úložiště šedé literatury Nalezeno 5 záznamů.  Hledání trvalo 0.01 vteřin. 
Modelling of Chemical Processes
Al Mahmoud Alsheikh, Amer ; Bártlová,, Milada (oponent) ; Urban,, Ján (oponent) ; Žídek, Jan (vedoucí práce)
In this thesis the study of the fragmentation process of certain molecule is presented and it has been used to know the nature of fragmentation products. This work is concentrated to the calculation of fragmentation energy of the molecule using ab initio quantum chemistry methods and density functional theory (DFT) calculations and with a support by experiment. The influence of the computational method, basis set, and the geometry of molecule on simulation has been presented. It was compared the fragmentaion of methylphenylsilane (MPS), dimethylphenylsilane (DMPS) and trimethylphenylsilane (TMPS). The fragmentation was initiated by electron impact ionization (EII). The mass spectrometry technique was used to the analysis of the composition of fragmentation products from MPS and TMPS. The fragmentation products measured in this work were interpreted with respect to the ionization energy, appearance energies of fragments and bond dissociation energy of selected bonds. The results for MPS and TMPS were completed with DMPS previously published experimental data in order to have the series of similar compounds, which differ only by number of CH3 groups. Even the structurally similar molecules have significantly different fragmentation behavior. Comparison with the theoretical bond dissociation energies calculated using the DFT calculations has been presented. Using the combined experimental and theoretical approaches we have focused our recent studies to the common features as well as basic differences of the fragmentation schemes of all the three molecules. We proposed subtraction of two hydrogen atoms during plasma induced fragmentation process. The subtraction of H2 molecule, specific for MPS but rarely observed also in the other two compounds was also of high interest in our studies. It can run in two mechanisms: i. subtraction of two hydrogens one-by-one and ii. dissociation of H2 in one step. We can predict which mechanism is more probable according to the DFT calculated energy profile of reaction. The calculated predictions were in correlation with the composition of fragmentation products from experimental mass spectra.
Influence of inlet hole position in hydrostatic bearing recess using CFD simulation
Androvič, Dominik ; Svoboda, Petr (oponent) ; Michalec, Michal (vedoucí práce)
This bachelor thesis deals with the influence of inlet hole position in hydrostatic bearing recess in combination with lubricating film tilting using CFD simulation in ANSYS Fluent software. Before the investigation, encapsulation of hydrostatic bearing, CFD simulation and research of hydrostatic bearings was implemented. For investigation of ours the analytical reference model of an axial hydrostatic bearing based on recommended design parameters was created. The main parameters of interest maximal recess pressure and load capacity of bearing were emerged from analytic solution. Subsequently, the maximal recess pressure and load capacity of the bearing were computed using CFD simulation for selected position of the inlet hole and the lubricating film tilt. The results indicate that the load capacity of the bearing is decreasing with the increasing lubricating film tilt. However, in case of alteration of inlet hole position even combined with selected lubricating film tilts no significant changes in maximal recess pressure or load capacity of the bearing with changing in position of inlet hole has been observed. The obtained results might be used to improve the design of hydrostatic bearings.
Optimalizace geometrie kapsy hydrostatického ložiska s využitím CFD simulace
Dryml, Tomáš ; Vimmr, Jan (oponent) ; Michalec, Michal (vedoucí práce)
Diplomová práce se zabývá optimalizací geometrie kapes hydrostatického ložiska s využitím CFD simulace a experimentálního měření. Kombinací experimentálního a numerického přístupu je zkoumán vliv variace tvaru a hloubky buněk hydrostatického ložiska na jednotlivé provozní parametry. Vliv variací geometrie je stanoven na základě numerické simulace, jež byla validována experimentálně získanými daty. Z výsledků vyplývá, že ideální hloubka buňky by měla odpovídat 20–50násobku výšky mazací vrstvy Simulace také ukazují, že variace hloubky má výrazný vliv na provozní parametry. Naopak variace tvaru buňky nijak významně neovlivňuje provozní parametry ložiska. Návrh optimální geometrie hydrostatického uložení je důležitý především proto, že může přinést značné finanční a energetické úspory spojené s provozem (především velkorozměrných) hydrostatických ložisek.
Influence of inlet hole position in hydrostatic bearing recess using CFD simulation
Androvič, Dominik ; Svoboda, Petr (oponent) ; Michalec, Michal (vedoucí práce)
This bachelor thesis deals with the influence of inlet hole position in hydrostatic bearing recess in combination with lubricating film tilting using CFD simulation in ANSYS Fluent software. Before the investigation, encapsulation of hydrostatic bearing, CFD simulation and research of hydrostatic bearings was implemented. For investigation of ours the analytical reference model of an axial hydrostatic bearing based on recommended design parameters was created. The main parameters of interest maximal recess pressure and load capacity of bearing were emerged from analytic solution. Subsequently, the maximal recess pressure and load capacity of the bearing were computed using CFD simulation for selected position of the inlet hole and the lubricating film tilt. The results indicate that the load capacity of the bearing is decreasing with the increasing lubricating film tilt. However, in case of alteration of inlet hole position even combined with selected lubricating film tilts no significant changes in maximal recess pressure or load capacity of the bearing with changing in position of inlet hole has been observed. The obtained results might be used to improve the design of hydrostatic bearings.
Modelling of Chemical Processes
Al Mahmoud Alsheikh, Amer ; Bártlová,, Milada (oponent) ; Urban,, Ján (oponent) ; Žídek, Jan (vedoucí práce)
In this thesis the study of the fragmentation process of certain molecule is presented and it has been used to know the nature of fragmentation products. This work is concentrated to the calculation of fragmentation energy of the molecule using ab initio quantum chemistry methods and density functional theory (DFT) calculations and with a support by experiment. The influence of the computational method, basis set, and the geometry of molecule on simulation has been presented. It was compared the fragmentaion of methylphenylsilane (MPS), dimethylphenylsilane (DMPS) and trimethylphenylsilane (TMPS). The fragmentation was initiated by electron impact ionization (EII). The mass spectrometry technique was used to the analysis of the composition of fragmentation products from MPS and TMPS. The fragmentation products measured in this work were interpreted with respect to the ionization energy, appearance energies of fragments and bond dissociation energy of selected bonds. The results for MPS and TMPS were completed with DMPS previously published experimental data in order to have the series of similar compounds, which differ only by number of CH3 groups. Even the structurally similar molecules have significantly different fragmentation behavior. Comparison with the theoretical bond dissociation energies calculated using the DFT calculations has been presented. Using the combined experimental and theoretical approaches we have focused our recent studies to the common features as well as basic differences of the fragmentation schemes of all the three molecules. We proposed subtraction of two hydrogen atoms during plasma induced fragmentation process. The subtraction of H2 molecule, specific for MPS but rarely observed also in the other two compounds was also of high interest in our studies. It can run in two mechanisms: i. subtraction of two hydrogens one-by-one and ii. dissociation of H2 in one step. We can predict which mechanism is more probable according to the DFT calculated energy profile of reaction. The calculated predictions were in correlation with the composition of fragmentation products from experimental mass spectra.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.