Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.00 vteřin. 
Study of transition from open to closed porosity stage during sintering of advanced ceramic materials
Spusta, Tomáš ; Pouchlý, Václav (oponent) ; Maca, Karel (vedoucí práce)
Hot isostatic pressing (HIP) is advanced technique for processing of fully dense ceramic materials, which have variety of structural (e.g. cutting tools), biological (e.g. dense bone and joint implants) or functional (e.g. transparent windows and armours) applications. For successful post-HIP treatment the presintered samples have to be air tight, i.e. without open porosity. The research in the field of transition from open to closed porosity stage is therefore very important, but it is only rarely published in the relevant literature. The experimental and theoretical study of this phenomena was therefore the main goal of this work. The analyses of theoretical models show that pore transformation from open to closed porosity is material characteristic which varies only with dihedral angle, independently on particle size or shaping process, and occurs from 92.6% t.d. to 93.7% t.d. for used materials (alumina, zirconia and magnesia-alumina spinel). These theoretical calculations were compared with experimental data obtained from the literature and with experimental data of this thesis with successful match for cubic systems (spine and cubic zirconia). The experimental results obtained for alumina were in good agreement with experimental data published in the literature (95-96% t.d.), but they were higher than the values calculated from theoretical models. Several hypotheses for explanation of this issue were described and some approaches of resolving this topic were proposed.
Study of transition from open to closed porosity stage during sintering of advanced ceramic materials
Spusta, Tomáš ; Pouchlý, Václav (oponent) ; Maca, Karel (vedoucí práce)
Hot isostatic pressing (HIP) is advanced technique for processing of fully dense ceramic materials, which have variety of structural (e.g. cutting tools), biological (e.g. dense bone and joint implants) or functional (e.g. transparent windows and armours) applications. For successful post-HIP treatment the presintered samples have to be air tight, i.e. without open porosity. The research in the field of transition from open to closed porosity stage is therefore very important, but it is only rarely published in the relevant literature. The experimental and theoretical study of this phenomena was therefore the main goal of this work. The analyses of theoretical models show that pore transformation from open to closed porosity is material characteristic which varies only with dihedral angle, independently on particle size or shaping process, and occurs from 92.6% t.d. to 93.7% t.d. for used materials (alumina, zirconia and magnesia-alumina spinel). These theoretical calculations were compared with experimental data obtained from the literature and with experimental data of this thesis with successful match for cubic systems (spine and cubic zirconia). The experimental results obtained for alumina were in good agreement with experimental data published in the literature (95-96% t.d.), but they were higher than the values calculated from theoretical models. Several hypotheses for explanation of this issue were described and some approaches of resolving this topic were proposed.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.