Národní úložiště šedé literatury Nalezeno 4 záznamů.  Hledání trvalo 0.01 vteřin. 
Čištění energoplynu kovovými katalyzátory
Baláš, Marek ; Noskievič, Pavel (oponent) ; Kabát, Viktor (oponent) ; Skála, Zdeněk (vedoucí práce)
Technologie zplyňování biomasy je jedním z možných způsobů využití biomasy pro energetické účely. Biomasa jakožto perspektivní obnovitelný zdroj energie stojí v popředí zájmu energetické obce nejen v ČR, ale i v zemích EU a ve světě. Zplyňování je termochemická přeměna paliva za přístupu podstechiometrického přístupu okysličovadla. Produktem zplyňování je nízkovýhřevný plyn, jehož hlavními hořlavými složkami jsou vodík, oxid uhelnatý a metan. Generovaný plyn lze využít dalších zařízeních zejména pro výrobu elektrické a tepelné energie. Kromě hořlavých a neutrálních složek však plyn obsahuje i nečistoty, jako sloučeniny síry a chlóru, prach a dehet. Právě dehet je označován za Achillovu patu zplyňování, protože způsobuje (společně s prachem) nánosy na dopravních cestách i v koncových zařízeních a zabraňuje tak přímé aplikaci plynu. Disertační práce se zabývá návrhem filtru pro odstranění dehtu z plynu generovaného na fluidním zplyňovacím zařízení. Práce úzce navazuje na dosavadní výzkum na pracovišti Energetického ústavu, FSI na VUT v Brně. V první části se práce týká teoretického rozboru problematiky. Jsou zde zmíněny vlastnosti biomasy a jejich dopad na proces zplyňování. Jsou zde popsány typy zplyňovacích zařízení a podrobně popsán princip zplyňování včetně chemických reakcí. Zvláštní část je věnována nečistotám v plynu, zejména vzniku a vlastnostem dehtu, což bylo důležité pro další činnost. Hlavní důraz je však kladen na možnosti katalytického čištění plynu od dehtu. Je zde popsán princip rozkladu dehtu na katalyzátoru a rozebrány typy a vlastnosti katalyzátorů. Část práce byla věnována oblasti provozu a ztrátě aktivity katalyzátoru působením sloučeninami síry, slinováním krystalků a zanášení uhlíkem. Na základě rozboru v první části práce a na základě zkušeností byla vypracována koncepce odstraňování dehtu z plynu, byla navržena metoda měření na experimentálním zařízení Biofluid 100 a byl navržen filtr pro testování průmyslových katalyzátorů na bázi kovu. Dále byla provedena série experimentů zajišťujících účinky tří vybraných katalyzátorů na rozklad dehtu. Výsledky provedených experimentů jsou podrobně rozebrány a vyhodnoceny v závěru práce. Zde je také nástin ekonomického hodnocení problematiky.
Návrh metod čištění plynu při zplyňování stébelnin
Moskalík, Jiří ; Noskievič, Pavel (oponent) ; Kabát, Viktor (oponent) ; Bébar, Ladislav (oponent) ; Fiedler, Jan (vedoucí práce)
Neustálý nárůst spotřeby energie vyžaduje, aby se vývoj v energetickém odvětví zaměřoval na obnovitelné zdroje energie. Další z možností jak snížit spotřebu primárních energetických zdrojů představuje také vyhledávání nových a netradičních paliv. V geografických podmínkách ČR se jako nejvýhodnější a potenciálně nejrozšířitelnější jeví biomasa. V posledních letech ovšem energetické využívání biomasy zaznamenalo výrazný vzestup a to i ve velkých energetických zdrojích. Tento nárůst spotřeby udělal hlavně ze dřevní biomasy nedostatkové palivo a začala se zvedat jeho cena. V tomto okamžiku se začínají spotřebitelé poohlížet po jiném typu paliva. Stébelniny a mírně kontaminovaná biomasa představují zástupce těchto netradičních paliv. Stébelniny jsou většinou jednoleté rostliny primárně pěstované za účelem obživy. Odpadní část těchto rostlin lze energeticky využít. Pro stébelniny jsou specifické poměrně nízká hodnoty charakteristických teplot popelovin. Spékání popelovin v zařízení představuje jednu z překážek energetického využívání stébelnin. Spékání popelovin sebou přináší řadu provozních problémů na energetických zařízeních. Proto je část práce věnována problematice tavení popelovin. Jednu z možností efektivního využívání biomasy představuje termické zplyňování. Zplyňování lze chápat jako termochemickou konverzi pevného paliva na jiné skupenství, v tomto případě plynné. Proces spalování je obecně lépe řiditelný právě u plynných paliv. Tím lze dosáhnout na výstupu spalovacích zařízení nižších emisí nežádoucích sloučenin. Proces termického zplyňování probíhá za podstechiometrického přístupu okysličovadla. Z procesu zplyňování vystupuje nízkovýhřevný plyn. Hlavní výhřevné složky produkovaného plynu jsou vodík, oxid uhelnatý a metan. Výsledný plyn obsahuje také spoustu nežádoucích složek, které jej z energetického hlediska znevýhodňují. Mimo neutrální složky, které plyn pouze naředí, jsou to nečistoty jako prach, dehet a sloučeniny síry a chlóru. Tyto znečišťující látky komplikují další využití generovaného plynu. Zejména dehtové sloučeniny společně s prachem způsobují nánosy na transportním potrubí i na spalovacích zařízeních využívajících generovaný plyn. Dalším přepracováním a čištěním se zvyšuje kvalita produkovaného plynu. Vyčištěný plyn lze využít ke kogeneraci a spalovat jej ve spalovacích motorech a turbínách, nebo jej klasicky použít pro přitápění dle potřeb technologie. V laboratořích Energetického ústavu byl, pro experimentální účely, postaven atmosférický fluidní zplyňovací reaktor Biofluid 100. Disertační práce je zaměřena na termické zplyňování stébelnin a dalších netradičních paliv v zařízení Biofluid. Snahou je dosáhnout stabilního procesu zplyňování stébelnin a tímto ověřit možnost jejich využití jako paliva pro technologii Biofluid. Následným cílem je návrh metod čištění surového plynu od dehtových sloučenin. Z důvodu požadavků vysoké čistoty výsledného plynu se práce zaměřuje na sekundární metody čištění plynu.
Návrh metod čištění plynu při zplyňování stébelnin
Moskalík, Jiří ; Noskievič, Pavel (oponent) ; Kabát, Viktor (oponent) ; Bébar, Ladislav (oponent) ; Fiedler, Jan (vedoucí práce)
Neustálý nárůst spotřeby energie vyžaduje, aby se vývoj v energetickém odvětví zaměřoval na obnovitelné zdroje energie. Další z možností jak snížit spotřebu primárních energetických zdrojů představuje také vyhledávání nových a netradičních paliv. V geografických podmínkách ČR se jako nejvýhodnější a potenciálně nejrozšířitelnější jeví biomasa. V posledních letech ovšem energetické využívání biomasy zaznamenalo výrazný vzestup a to i ve velkých energetických zdrojích. Tento nárůst spotřeby udělal hlavně ze dřevní biomasy nedostatkové palivo a začala se zvedat jeho cena. V tomto okamžiku se začínají spotřebitelé poohlížet po jiném typu paliva. Stébelniny a mírně kontaminovaná biomasa představují zástupce těchto netradičních paliv. Stébelniny jsou většinou jednoleté rostliny primárně pěstované za účelem obživy. Odpadní část těchto rostlin lze energeticky využít. Pro stébelniny jsou specifické poměrně nízká hodnoty charakteristických teplot popelovin. Spékání popelovin v zařízení představuje jednu z překážek energetického využívání stébelnin. Spékání popelovin sebou přináší řadu provozních problémů na energetických zařízeních. Proto je část práce věnována problematice tavení popelovin. Jednu z možností efektivního využívání biomasy představuje termické zplyňování. Zplyňování lze chápat jako termochemickou konverzi pevného paliva na jiné skupenství, v tomto případě plynné. Proces spalování je obecně lépe řiditelný právě u plynných paliv. Tím lze dosáhnout na výstupu spalovacích zařízení nižších emisí nežádoucích sloučenin. Proces termického zplyňování probíhá za podstechiometrického přístupu okysličovadla. Z procesu zplyňování vystupuje nízkovýhřevný plyn. Hlavní výhřevné složky produkovaného plynu jsou vodík, oxid uhelnatý a metan. Výsledný plyn obsahuje také spoustu nežádoucích složek, které jej z energetického hlediska znevýhodňují. Mimo neutrální složky, které plyn pouze naředí, jsou to nečistoty jako prach, dehet a sloučeniny síry a chlóru. Tyto znečišťující látky komplikují další využití generovaného plynu. Zejména dehtové sloučeniny společně s prachem způsobují nánosy na transportním potrubí i na spalovacích zařízeních využívajících generovaný plyn. Dalším přepracováním a čištěním se zvyšuje kvalita produkovaného plynu. Vyčištěný plyn lze využít ke kogeneraci a spalovat jej ve spalovacích motorech a turbínách, nebo jej klasicky použít pro přitápění dle potřeb technologie. V laboratořích Energetického ústavu byl, pro experimentální účely, postaven atmosférický fluidní zplyňovací reaktor Biofluid 100. Disertační práce je zaměřena na termické zplyňování stébelnin a dalších netradičních paliv v zařízení Biofluid. Snahou je dosáhnout stabilního procesu zplyňování stébelnin a tímto ověřit možnost jejich využití jako paliva pro technologii Biofluid. Následným cílem je návrh metod čištění surového plynu od dehtových sloučenin. Z důvodu požadavků vysoké čistoty výsledného plynu se práce zaměřuje na sekundární metody čištění plynu.
Čištění energoplynu kovovými katalyzátory
Baláš, Marek ; Noskievič, Pavel (oponent) ; Kabát, Viktor (oponent) ; Skála, Zdeněk (vedoucí práce)
Technologie zplyňování biomasy je jedním z možných způsobů využití biomasy pro energetické účely. Biomasa jakožto perspektivní obnovitelný zdroj energie stojí v popředí zájmu energetické obce nejen v ČR, ale i v zemích EU a ve světě. Zplyňování je termochemická přeměna paliva za přístupu podstechiometrického přístupu okysličovadla. Produktem zplyňování je nízkovýhřevný plyn, jehož hlavními hořlavými složkami jsou vodík, oxid uhelnatý a metan. Generovaný plyn lze využít dalších zařízeních zejména pro výrobu elektrické a tepelné energie. Kromě hořlavých a neutrálních složek však plyn obsahuje i nečistoty, jako sloučeniny síry a chlóru, prach a dehet. Právě dehet je označován za Achillovu patu zplyňování, protože způsobuje (společně s prachem) nánosy na dopravních cestách i v koncových zařízeních a zabraňuje tak přímé aplikaci plynu. Disertační práce se zabývá návrhem filtru pro odstranění dehtu z plynu generovaného na fluidním zplyňovacím zařízení. Práce úzce navazuje na dosavadní výzkum na pracovišti Energetického ústavu, FSI na VUT v Brně. V první části se práce týká teoretického rozboru problematiky. Jsou zde zmíněny vlastnosti biomasy a jejich dopad na proces zplyňování. Jsou zde popsány typy zplyňovacích zařízení a podrobně popsán princip zplyňování včetně chemických reakcí. Zvláštní část je věnována nečistotám v plynu, zejména vzniku a vlastnostem dehtu, což bylo důležité pro další činnost. Hlavní důraz je však kladen na možnosti katalytického čištění plynu od dehtu. Je zde popsán princip rozkladu dehtu na katalyzátoru a rozebrány typy a vlastnosti katalyzátorů. Část práce byla věnována oblasti provozu a ztrátě aktivity katalyzátoru působením sloučeninami síry, slinováním krystalků a zanášení uhlíkem. Na základě rozboru v první části práce a na základě zkušeností byla vypracována koncepce odstraňování dehtu z plynu, byla navržena metoda měření na experimentálním zařízení Biofluid 100 a byl navržen filtr pro testování průmyslových katalyzátorů na bázi kovu. Dále byla provedena série experimentů zajišťujících účinky tří vybraných katalyzátorů na rozklad dehtu. Výsledky provedených experimentů jsou podrobně rozebrány a vyhodnoceny v závěru práce. Zde je také nástin ekonomického hodnocení problematiky.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.