Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.01 vteřin. 
Novel Antibacterial Collagen Scaffolds for Regenerative Medicine
Dorazilová, Jana ; Brtníková, Jana (oponent) ; Vojtová, Lucy (vedoucí práce)
This master’s thesis deals with the characterisation of 3D porous collagenous sponges enriched with selected antibacterial agents. The literature part of the thesis focuses on the overview of biomaterials and biopolymers with the emphasis on collagen and chitosan, outlines the antibacterial properties of nanoparticles and reviews current aspects of using selenium nanoparticles as an antibacterial agent. For the purpose of this work, two types of antibacterial additives were used – biopolymeric chitosan and selenium nanoparticles. Preparation of 3D porous structure was achieved using the freeze drying method. Mechanical properties of prepared biopolymeric matrices were improved by chemical crosslinking in the presence of carbodiimide. Predominantly physiochemical methods were used for characterization of prepared collagenous sponges. For microstructure analysis, pore size determination, visualisation of nanoparticles and their distribution inside the porous structure, scanning electron microscopy (SEM) with energy dispersive x ray optical analysis (EDX) was used. Parameters such as total porosity, swelling ratio, weight loss during degradation in water and enzymatic environment were evaluated by suitable gravimetric methods. Fourier transformed infrared spectroscopy with attenuated total reflectance (ATR-FTIR) was used to determine changes in the chemical structure of collagenous matrices before and after addition of the antibacterial agents. Percentage release of nanoparticles was evaluated using optical emission spectroscopy with inductively coupled plasma (ICP OES). Evaluation of antibacterial properties of tested samples was carried out mainly by the agar diffusion disk method and the macrodilution broth method. In the conducted research we were able to determine the influence of selected antibacterial additives on the physiochemical properties of 3D collagenous matrices. Their antibacterial activities showed a positive effect on bacterial inhibition of both chitosan and selenium nanoparticles with respect to their concentrations. The designed materials could be further utilized for bio medicinal applications, especially in the field of soft tissue regeneration.
Novel Antibacterial Collagen Scaffolds for Regenerative Medicine
Dorazilová, Jana ; Brtníková, Jana (oponent) ; Vojtová, Lucy (vedoucí práce)
This master’s thesis deals with the characterisation of 3D porous collagenous sponges enriched with selected antibacterial agents. The literature part of the thesis focuses on the overview of biomaterials and biopolymers with the emphasis on collagen and chitosan, outlines the antibacterial properties of nanoparticles and reviews current aspects of using selenium nanoparticles as an antibacterial agent. For the purpose of this work, two types of antibacterial additives were used – biopolymeric chitosan and selenium nanoparticles. Preparation of 3D porous structure was achieved using the freeze drying method. Mechanical properties of prepared biopolymeric matrices were improved by chemical crosslinking in the presence of carbodiimide. Predominantly physiochemical methods were used for characterization of prepared collagenous sponges. For microstructure analysis, pore size determination, visualisation of nanoparticles and their distribution inside the porous structure, scanning electron microscopy (SEM) with energy dispersive x ray optical analysis (EDX) was used. Parameters such as total porosity, swelling ratio, weight loss during degradation in water and enzymatic environment were evaluated by suitable gravimetric methods. Fourier transformed infrared spectroscopy with attenuated total reflectance (ATR-FTIR) was used to determine changes in the chemical structure of collagenous matrices before and after addition of the antibacterial agents. Percentage release of nanoparticles was evaluated using optical emission spectroscopy with inductively coupled plasma (ICP OES). Evaluation of antibacterial properties of tested samples was carried out mainly by the agar diffusion disk method and the macrodilution broth method. In the conducted research we were able to determine the influence of selected antibacterial additives on the physiochemical properties of 3D collagenous matrices. Their antibacterial activities showed a positive effect on bacterial inhibition of both chitosan and selenium nanoparticles with respect to their concentrations. The designed materials could be further utilized for bio medicinal applications, especially in the field of soft tissue regeneration.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.