Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.00 vteřin. 
Cellulose Nanofibers and Aerogel Materials
Salajková, Michaela ; Kalfus, Jan (oponent) ; Jančář, Josef (vedoucí práce)
This thesis deals with preparation and characterization of new microfibrillated cellulose/multi-walled carbon nanotubes (MFC/MWCNTs) composite materials. Three different pre-treatment methods were used in order to disperse MWCNTs in water. The effect of different pre-treatments on the quality of MWCNTs suspension was studied. Composite films containing MFC and MWCNTs were prepared, and their mechanical and electrical properties and morphology were characterized. MWCNTs suspensions were characterized by UV-VIS spectroscopy, Scanning Electron Microscopy (SEM), and Thermogravimetric analysis (TGA). Electrical properties of MFC/MWCNTs composite films were measured by Keithly Electrometer/High Resistivity Meter. For characterization of mechanical properties, tensile test was performed using Miniature Materials Tester. The morphology of the composite films was observed using SEM. Any significant effect of MWCNTs on mechanical properties wasn´t found. Concerning the surface resistivity data, typical percolation behaviour was revealed, indicating conductive composite material was successfully prepared. However, the surface resistivity values differ significantly between the top and bottom sides of the composite films. These results suggested that the preparation process for the composite materials and the compatibility between MFC and MWCNTs need to be improved.
Cellulose Nanofibers and Aerogel Materials
Salajková, Michaela ; Kalfus, Jan (oponent) ; Jančář, Josef (vedoucí práce)
This thesis deals with preparation and characterization of new microfibrillated cellulose/multi-walled carbon nanotubes (MFC/MWCNTs) composite materials. Three different pre-treatment methods were used in order to disperse MWCNTs in water. The effect of different pre-treatments on the quality of MWCNTs suspension was studied. Composite films containing MFC and MWCNTs were prepared, and their mechanical and electrical properties and morphology were characterized. MWCNTs suspensions were characterized by UV-VIS spectroscopy, Scanning Electron Microscopy (SEM), and Thermogravimetric analysis (TGA). Electrical properties of MFC/MWCNTs composite films were measured by Keithly Electrometer/High Resistivity Meter. For characterization of mechanical properties, tensile test was performed using Miniature Materials Tester. The morphology of the composite films was observed using SEM. Any significant effect of MWCNTs on mechanical properties wasn´t found. Concerning the surface resistivity data, typical percolation behaviour was revealed, indicating conductive composite material was successfully prepared. However, the surface resistivity values differ significantly between the top and bottom sides of the composite films. These results suggested that the preparation process for the composite materials and the compatibility between MFC and MWCNTs need to be improved.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.