Národní úložiště šedé literatury Nalezeno 6 záznamů.  Hledání trvalo 0.00 vteřin. 
Vysoce náročné aplikace na svazku karet Intel Xeon Phi
Kačurik, Tomáš ; Hrbáček, Radek (oponent) ; Jaroš, Jiří (vedoucí práce)
Táto práca sa zaoberá implementáciou a optimalizáciou vysoko náročných aplikácií na zväzku Intel Xeon Phi koprocesorov. Na dvoch prístupoch k riešeniu N-Body problému boli demonštrované možnosti behu programov na zväzku procesorov, koprocesorov a s využitím oboch typov zariadení. Zvolené boli dva verzie N-Body problému -  naivná a Barnes-hut. Oba problémy boli implementované a optimalizované. Práca tiež zachytáva proces optimalizácie a zmeny vo výkone po aplikovaní jednotlivých optimalizácií. Pre lepšie porovnanie dosiahnutých výkonov sme porovnávali programy na základe dosiahnutého zrýchlenia voči behu programu na jednom výpočtovom uzle pri využití len procesorov. V prípade naivnej verzie bolo dosiahnuté 15 násobné zrýchlenie pri využití procesorov a koprocesorov na 8 výpočtových uzloch. Výkon dosiahnutý v tomto prípade predstavoval 9 TFLOP/s. Na základe dosiahnutých výsledkov sme v závere zhodnotili výhody a nevýhody pri behu programov v distribuovanom prostredí na procesoroch, koprocesoroch alebo s využitím oboch typov zariadení.
Efektivní implementace výpočetně náročných algoritmů na Intel Xeon Phi
Šimek, Dominik ; Hrbáček, Radek (oponent) ; Jaroš, Jiří (vedoucí práce)
Táto práca sa zaoberá implementáciou a optimalizáciou výpočtovo náročných algoritmov na koprocesore Intel Xeon Phi. Koprocesor Xeon Phi bol predstavený firmou Intel v roku 2012 ako odpoveď na obrovský nárast v používaní technológie GPGPU. Xeon Phi disponuje podstatne väčším výkonom ako procesor, preto je podobne ako GPGPU vhodnou platformou pre beh výpočtovo náročných programov. Xeon Phi zatiaľ v praxi nie je velmi používaný, preto je potrebné hľadať možné oblasti uplatnenia. Rozrastá sa ale jeho použitie v superpočítačových centrách, napríklad Milky Way 2 - Guangzhou (Čina), Salomon - Ostrava. Cieľom tohto dokumentu je oboznámiť čitateľa s problematikou implementácie náročných algoritmov na akceleračnej karte Xeon Phi, ich optimalizácie a meranie výkonu. Výkon koprocesoru Intel Xeon Phi bude porovnávaný s výkonom procesorov Intel Xeon.  V teoretickej časti práce bude čitateľ oboznámený s architektúrou a princípmi koprocesoru Xeon Phi. Budeme sa venovať výhodám ale aj nevýhodám tohto koprocesoru, ktoré budú často porovnávané s všeobecnými vlastnosťami procesorov. Témou bude taktiež otázka, kedy je vhodné zvoliť pre výpočet akcelerečnú kartu Xeon Phi a kedy procesor. Detailne si vysvetlíme a znázorníme výber vhodných algoritmov pre Xeon Phi, postup ich implementácie, optimalizácie a meranie výkonu. Okrem toho budú rozoberané problémy a úskalia, ktoré môžu nastať pri implementácii algoritmov a používaní koprocesoru. Dané demonštrujeme najskôr na ukážkových problémoch, ktoré boli riešené na Ostravskom superpočítači Anselm. V prvom rade to budú jednoduché benchamrky typu násobenie matíc, násobenie matice a vektora, na ktorých budú ukázané základné princípy implementácie optimálnych algoritmov pre koprocesor Xeon Phi. Napríklad pri benchmarku násobenia matice a vektora bolo dosiahnutých asi 6.5% teoretického výkonu koprocesoru. Ďalším, komplexnejším problémom bude N-Body Simulation - simulácia pohybu častíc v priestore, na ktorom sme otestovali potenciál Xeon Phi. Výkon koprocesoru sa pri tomto benchmarku vyšplhal až na viac ako 35% teoretického výkonu - 725 gFLOPS (maximálny výkon 2000 gFLOPS pre dáta s jednoduchou presnosťou). Čitateľ sa okrem iného môže dozvedieť aj zaujímavé informácie z oblasti fyzikálnych simulácií, konkrétne bude reč o module pre MATLAB (k-Wave). K-Wave sa zaoberá simuláciou šírenia akustických vĺn v 1D, 2D a 3D, čo sa využíva napríklad pri simulácii šírenia ultrazvukových vĺn v mäkkých tkanivách. Na koniec si stručne povieme o portovaní už existujúcich knižníc, modulov či programov na Xeon Phi zo snahou využitia jeho potenciálu. Bude to napríklad kroskompilácia knižníc HDF5, ZLIB či konca interpretu jazyka Python s modulmi Numpy a Scipy.
Paralelizace ultrazvukových simulací pomocí akcelerátoru Intel Xeon Phi
Vrbenský, Andrej ; Hrbáček, Radek (oponent) ; Jaroš, Jiří (vedoucí práce)
Simulácia šírenia ultrazvukových akustických vĺn má v dnešnej dobe široké praktické použitie. Jedným z nich je simulácia v reálnom tkanivovom prostredí, ktorá má dobré uplatnenie v medicíne. Jednou z aplikácií, ktoré sú na túto simuláciu určené, je k-Wave toolbox. Výpočtová náročnosť takýchto simulácii je veľmi veľká a preto sa vyvíjajú nové metódy pre jej zrýchlenie. V tejto diplomovej práci sme navrhli riešenie pre urýchlenie simulácie, založené na paralelizácii výpočtu na akceleračnej karte Intel Xeon Phi. Akcelerátor obsahuje vysoký počet jadier a extra-širokú vektorovú jednotku, a je preto ideálny na paralelizáciu a vektorizáciu. Implementácia využíva OpenMP verzie 4.0, ktorá prináša niektoré nové možnosti ako napríklad explicitnú vektorizáciu. Dosiahnuté výsledky boli namerané počas rozsiahlych experimentov.
Paralelizace ultrazvukových simulací pomocí akcelerátoru Intel Xeon Phi
Vrbenský, Andrej ; Hrbáček, Radek (oponent) ; Jaroš, Jiří (vedoucí práce)
Simulácia šírenia ultrazvukových akustických vĺn má v dnešnej dobe široké praktické použitie. Jedným z nich je simulácia v reálnom tkanivovom prostredí, ktorá má dobré uplatnenie v medicíne. Jednou z aplikácií, ktoré sú na túto simuláciu určené, je k-Wave toolbox. Výpočtová náročnosť takýchto simulácii je veľmi veľká a preto sa vyvíjajú nové metódy pre jej zrýchlenie. V tejto diplomovej práci sme navrhli riešenie pre urýchlenie simulácie, založené na paralelizácii výpočtu na akceleračnej karte Intel Xeon Phi. Akcelerátor obsahuje vysoký počet jadier a extra-širokú vektorovú jednotku, a je preto ideálny na paralelizáciu a vektorizáciu. Implementácia využíva OpenMP verzie 4.0, ktorá prináša niektoré nové možnosti ako napríklad explicitnú vektorizáciu. Dosiahnuté výsledky boli namerané počas rozsiahlych experimentov.
Vysoce náročné aplikace na svazku karet Intel Xeon Phi
Kačurik, Tomáš ; Hrbáček, Radek (oponent) ; Jaroš, Jiří (vedoucí práce)
Táto práca sa zaoberá implementáciou a optimalizáciou vysoko náročných aplikácií na zväzku Intel Xeon Phi koprocesorov. Na dvoch prístupoch k riešeniu N-Body problému boli demonštrované možnosti behu programov na zväzku procesorov, koprocesorov a s využitím oboch typov zariadení. Zvolené boli dva verzie N-Body problému -  naivná a Barnes-hut. Oba problémy boli implementované a optimalizované. Práca tiež zachytáva proces optimalizácie a zmeny vo výkone po aplikovaní jednotlivých optimalizácií. Pre lepšie porovnanie dosiahnutých výkonov sme porovnávali programy na základe dosiahnutého zrýchlenia voči behu programu na jednom výpočtovom uzle pri využití len procesorov. V prípade naivnej verzie bolo dosiahnuté 15 násobné zrýchlenie pri využití procesorov a koprocesorov na 8 výpočtových uzloch. Výkon dosiahnutý v tomto prípade predstavoval 9 TFLOP/s. Na základe dosiahnutých výsledkov sme v závere zhodnotili výhody a nevýhody pri behu programov v distribuovanom prostredí na procesoroch, koprocesoroch alebo s využitím oboch typov zariadení.
Efektivní implementace výpočetně náročných algoritmů na Intel Xeon Phi
Šimek, Dominik ; Hrbáček, Radek (oponent) ; Jaroš, Jiří (vedoucí práce)
Táto práca sa zaoberá implementáciou a optimalizáciou výpočtovo náročných algoritmov na koprocesore Intel Xeon Phi. Koprocesor Xeon Phi bol predstavený firmou Intel v roku 2012 ako odpoveď na obrovský nárast v používaní technológie GPGPU. Xeon Phi disponuje podstatne väčším výkonom ako procesor, preto je podobne ako GPGPU vhodnou platformou pre beh výpočtovo náročných programov. Xeon Phi zatiaľ v praxi nie je velmi používaný, preto je potrebné hľadať možné oblasti uplatnenia. Rozrastá sa ale jeho použitie v superpočítačových centrách, napríklad Milky Way 2 - Guangzhou (Čina), Salomon - Ostrava. Cieľom tohto dokumentu je oboznámiť čitateľa s problematikou implementácie náročných algoritmov na akceleračnej karte Xeon Phi, ich optimalizácie a meranie výkonu. Výkon koprocesoru Intel Xeon Phi bude porovnávaný s výkonom procesorov Intel Xeon.  V teoretickej časti práce bude čitateľ oboznámený s architektúrou a princípmi koprocesoru Xeon Phi. Budeme sa venovať výhodám ale aj nevýhodám tohto koprocesoru, ktoré budú často porovnávané s všeobecnými vlastnosťami procesorov. Témou bude taktiež otázka, kedy je vhodné zvoliť pre výpočet akcelerečnú kartu Xeon Phi a kedy procesor. Detailne si vysvetlíme a znázorníme výber vhodných algoritmov pre Xeon Phi, postup ich implementácie, optimalizácie a meranie výkonu. Okrem toho budú rozoberané problémy a úskalia, ktoré môžu nastať pri implementácii algoritmov a používaní koprocesoru. Dané demonštrujeme najskôr na ukážkových problémoch, ktoré boli riešené na Ostravskom superpočítači Anselm. V prvom rade to budú jednoduché benchamrky typu násobenie matíc, násobenie matice a vektora, na ktorých budú ukázané základné princípy implementácie optimálnych algoritmov pre koprocesor Xeon Phi. Napríklad pri benchmarku násobenia matice a vektora bolo dosiahnutých asi 6.5% teoretického výkonu koprocesoru. Ďalším, komplexnejším problémom bude N-Body Simulation - simulácia pohybu častíc v priestore, na ktorom sme otestovali potenciál Xeon Phi. Výkon koprocesoru sa pri tomto benchmarku vyšplhal až na viac ako 35% teoretického výkonu - 725 gFLOPS (maximálny výkon 2000 gFLOPS pre dáta s jednoduchou presnosťou). Čitateľ sa okrem iného môže dozvedieť aj zaujímavé informácie z oblasti fyzikálnych simulácií, konkrétne bude reč o module pre MATLAB (k-Wave). K-Wave sa zaoberá simuláciou šírenia akustických vĺn v 1D, 2D a 3D, čo sa využíva napríklad pri simulácii šírenia ultrazvukových vĺn v mäkkých tkanivách. Na koniec si stručne povieme o portovaní už existujúcich knižníc, modulov či programov na Xeon Phi zo snahou využitia jeho potenciálu. Bude to napríklad kroskompilácia knižníc HDF5, ZLIB či konca interpretu jazyka Python s modulmi Numpy a Scipy.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.