Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.00 vteřin. 
Studium propagace spinových vln v prostředí s netriviální distribucí magnetizace
Klíma, Jan ; Staňo, Michal (oponent) ; Wojewoda, Ondřej (vedoucí práce)
Magnonika je obor fyziky zabývající se spinovými vlnami a jejich kvazičásticemi – magnony. Spinové vlny jsou jedním z kandidátů pro budoucí výpočetní technologie. Obvody a součástky využívající vlastnosti spinových vln mají potenciál doplnit či nahradit ty současné, založené na CMOS technologiích, které již dosáhly svého fyzikálního limitu. Pro zpracování informací pomocí spinových vln je zapotřebí umět spinové vlny efektivně navádět v magnonických obvodech, zejména v různě zahnutých vlnovodech propojujících jednotlivé prvky obvodů. Kvůli anizotropnímu chování spinových vln není tato problematika zcela triviální a dosud nebyla dostatečně prozkoumána. V této práci jsme využili zvlnění magnetické vrstvy vlnovodu, které indukuje uniaxiální magnetickou anizotropii, s jejíž pomocí můžeme efektivně ovládat směr magnetizace ve vlnovodu s prostorovým rozlišením v řádu desetin mikrometru. Tímto způsobem můžeme šířit spinové vlny v požadovaných módech v různých směrech bez nutnosti vnějšího pole. K návrhu zatáčky jsme vytvořili model, který analyzuje energetické příspěvky magnetizace a najde tak velikost a směr výsledného efektivního magnetického pole. Pomocí tohoto modelu a důkladné analýzy disperzní relace jsme navrhli zahnutý vlnovod, který je schopný stočit spinové vlny, což jsme prokázali mikroskopií Brillouinova rozptylu světla.
Magnetism in curved geometries
Turčan, Igor ; Makarov, Denys (oponent) ; Grundler, Dirk (oponent) ; Urbánek, Michal (vedoucí práce)
In the field of magnonics, which is a novel research topic utilizing the physics of spin waves, there is an increasing interest in developing functional spin-wave devices with unique properties. These devices allow us to control the spin-wave flow and are needed for future spin-wave-based information processing. However, their technical realization is highly challenging with conventional approaches. They rely on planar magnonic structures, where the magnetic properties are exclusively given by the intrinsic parameters of used materials. Thus, properties like uniaxial magnetic anisotropy cannot be directly controlled. The presented thesis exploits a novel approach of inducing the effective magnetic interaction by the curvature of the system. The corrugation-induced uniaxial magnetic anisotropy is studied in structures with modulated surfaces prepared by focused electron beam-induced deposition and electron beam lithography. The potential of the local control over the magnetization direction using the 3D nanofabrication approach is universal and can be used with any commonly used magnetic material. Furthermore, the spin-wave propagation in the Damon-Eshbach geometry without an external magnetic field is demonstrated in corrugated magnetic waveguides by means of Brillouin light scattering microscopy. The broadening of the ferromagnetic resonance peak and extraction of the damping parameter is presented for the planar and corrugated structures. Finally, the comparison of the spin-wave propagation length measurement in corrugated waveguides with the total damping measurements, and with analytical calculations is shown. The decrease of the propagation length for the waveguides with larger modulation amplitude is associated to the increase of the damping parameter.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.