Národní úložiště šedé literatury Nalezeno 4 záznamů.  Hledání trvalo 0.01 vteřin. 
Short Crack Growth in Materials for High Temperature Applications
Mazánová, Veronika ; Obrtlík, Karel (oponent) ; Krupp, habil Ulrich (oponent) ; Polák, Jaroslav (vedoucí práce)
: Advanced highly-alloyed austenitic stainless steel Sanicro 25 based on Fe-Ni-Cr matrix was studied under the conditions of low cycle fatigue at room temperature and at elevated temperature of 700 °C. Several state-of-the-art experimental techniques were used to investigate the mutual effects of alloy composition, microstructural changes and deformation mechanisms, which determine the overall damage resistance of the material. The main effort has been focused on the fatigue crack initiation and the short crack growth, two stages which play an essential role in the resulting fatigue life of the material in the service. • The internal deformation mechanisms were correlated with the evolution of the surface relief in the form of persistent slip markings. It was found that the high planar character of the dislocation slip causes the high cyclic plastic strain localization into the persistent slip bands and thus the early Stage I crack nucleation associated with the presence of the persistent slip markings in all studied samples. The twin boundary cracking was found to be related to the presence of the persistent slip marking along the surface trace of twin boundary as well. • The intergranular crack initiation was observed only rarely at high strain amplitude loading. It was found to be related to the presence of the persistent slip markings at the grain boundary. Owing to high number of local incompatibilities at the grain boundary caused by the shape of the persistent slip markings the grain boundary cracks under the external tensile loading. • The crack growth mechanisms of natural short cracks were studied on the samples subjected both to low and high strain amplitude cycling. The role of microstructure was analysed using experimental techniques and discussed. • The crack growth rates of the longest cracks were measured on the samples with a shallow notch. The results were analysed using the fracture mechanics approaches based both on amplitude of KI and of J-integral as well as on the plastic strain amplitude. All approaches were discussed in the relation to the Manson-Coffin fatigue life curve. The simple power law of the short crack growth based on the plastic strain amplitude shows very good correlation to the fatigue life law. • In the case of cycling at elevated temperature the role of oxidation was studied. The brittle cracking of the oxidized grain boundaries was found to play a major role in the early stages of crack nucleation. Later the crack growth path changes to be preferentially transgranular. The crack growth path is very similar to that studied in room temperature cycling.
High Temperature Deformation Mechanisms
Heczko, Milan ; Gröger,, Roman (oponent) ; Spätig, Philipp (oponent) ; Kruml, Tomáš (vedoucí práce)
Two advanced highly-alloyed austenitic steels based on the Fe-Ni-Cr matrix were studied in conditions of low cycle fatigue both at room and elevated temperature. Extensive set of experimental and characterization tools was used for the investigation of inter-related effects of alloys composition, microstructure, deformation mechanisms and overall material response under load. Key mechanisms and factors determining mechanical properties and performance in the service were analysed and discussed in the relation to the materials design. • Standard fatigue experiments were performed at room temperature and at 700°C. Cyclic hardening/softening curves, cyclic deformation stress-strain curves, Coffin-Manson and Wöhler fatigue life curves were determined. • Various characterization techniques of electron microscopy were used to study changes of the microstructural state of the alloys due to the cyclic loading at room and elevated temperatures. • Fatigue behaviour, strength and cyclic plastic response of studied materials were explained in relation to the microstructure and microstructural aspects of deformation mechanisms both at room and elevated temperatures. • It was found that Sanicro 25 exhibits the highest high temperature strength of all alloys from the same class. Its extraordinary properties are related to the two nanoparticle populations, Cu-rich coherent precipitates and dispersoid-like MX nanoparticles, which play fundamental role in the determination of strength and overall cyclic response. As a result of pinning effects and associated obstacles, dislocation motion in this alloy is significantly retarded preventing formation of substructures with lower stored internal energy. With recovery heavily suppressed, forest dislocation strengthening supported by precipitation and solid solution hardening, leads to the remarkable increase of cyclic strength at elevated temperatures.
Short Crack Growth in Materials for High Temperature Applications
Mazánová, Veronika ; Obrtlík, Karel (oponent) ; Krupp, habil Ulrich (oponent) ; Polák, Jaroslav (vedoucí práce)
: Advanced highly-alloyed austenitic stainless steel Sanicro 25 based on Fe-Ni-Cr matrix was studied under the conditions of low cycle fatigue at room temperature and at elevated temperature of 700 °C. Several state-of-the-art experimental techniques were used to investigate the mutual effects of alloy composition, microstructural changes and deformation mechanisms, which determine the overall damage resistance of the material. The main effort has been focused on the fatigue crack initiation and the short crack growth, two stages which play an essential role in the resulting fatigue life of the material in the service. • The internal deformation mechanisms were correlated with the evolution of the surface relief in the form of persistent slip markings. It was found that the high planar character of the dislocation slip causes the high cyclic plastic strain localization into the persistent slip bands and thus the early Stage I crack nucleation associated with the presence of the persistent slip markings in all studied samples. The twin boundary cracking was found to be related to the presence of the persistent slip marking along the surface trace of twin boundary as well. • The intergranular crack initiation was observed only rarely at high strain amplitude loading. It was found to be related to the presence of the persistent slip markings at the grain boundary. Owing to high number of local incompatibilities at the grain boundary caused by the shape of the persistent slip markings the grain boundary cracks under the external tensile loading. • The crack growth mechanisms of natural short cracks were studied on the samples subjected both to low and high strain amplitude cycling. The role of microstructure was analysed using experimental techniques and discussed. • The crack growth rates of the longest cracks were measured on the samples with a shallow notch. The results were analysed using the fracture mechanics approaches based both on amplitude of KI and of J-integral as well as on the plastic strain amplitude. All approaches were discussed in the relation to the Manson-Coffin fatigue life curve. The simple power law of the short crack growth based on the plastic strain amplitude shows very good correlation to the fatigue life law. • In the case of cycling at elevated temperature the role of oxidation was studied. The brittle cracking of the oxidized grain boundaries was found to play a major role in the early stages of crack nucleation. Later the crack growth path changes to be preferentially transgranular. The crack growth path is very similar to that studied in room temperature cycling.
High Temperature Deformation Mechanisms
Heczko, Milan ; Gröger,, Roman (oponent) ; Spätig, Philipp (oponent) ; Kruml, Tomáš (vedoucí práce)
Two advanced highly-alloyed austenitic steels based on the Fe-Ni-Cr matrix were studied in conditions of low cycle fatigue both at room and elevated temperature. Extensive set of experimental and characterization tools was used for the investigation of inter-related effects of alloys composition, microstructure, deformation mechanisms and overall material response under load. Key mechanisms and factors determining mechanical properties and performance in the service were analysed and discussed in the relation to the materials design. • Standard fatigue experiments were performed at room temperature and at 700°C. Cyclic hardening/softening curves, cyclic deformation stress-strain curves, Coffin-Manson and Wöhler fatigue life curves were determined. • Various characterization techniques of electron microscopy were used to study changes of the microstructural state of the alloys due to the cyclic loading at room and elevated temperatures. • Fatigue behaviour, strength and cyclic plastic response of studied materials were explained in relation to the microstructure and microstructural aspects of deformation mechanisms both at room and elevated temperatures. • It was found that Sanicro 25 exhibits the highest high temperature strength of all alloys from the same class. Its extraordinary properties are related to the two nanoparticle populations, Cu-rich coherent precipitates and dispersoid-like MX nanoparticles, which play fundamental role in the determination of strength and overall cyclic response. As a result of pinning effects and associated obstacles, dislocation motion in this alloy is significantly retarded preventing formation of substructures with lower stored internal energy. With recovery heavily suppressed, forest dislocation strengthening supported by precipitation and solid solution hardening, leads to the remarkable increase of cyclic strength at elevated temperatures.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.