Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.01 vteřin. 
An explicit time scheme with local time stepping for one-dimensional wave propagation in a bimaterial bar
Kolman, Radek ; Cho, S.S. ; Gonzalez, J.G. ; Park, K.C. ; Berezovski, A.
In this paper, we test a two-time step explicit scheme with local time stepping. The standard explicit time scheme in finite element analysis is not able to keep accuracy of stress distribution through meshes with different local Courant numbers for each finite element. The used two-time step scheme with the diagonal mass matrix is based on the modification of the central difference method with pullback interpolation. We present a numerical example of one-dimensional wave propagation in a bimaterial elastic bar. Based on numerical tests, the employed time scheme with pullback interpolation and local stepping technique is able to eliminate spurious oscillations in stress distribution in numerical modelling of shock wave propagation in heterogeneous materials.
Dispersion properties of finite element method: review
Kolman, Radek ; Okrouhlík, Miloslav ; Plešek, Jiří ; Gabriel, Dušan
Review of the dispersion properties of plane square bilinear finite element used in plane elastic wave propagation problems is presented. It is assumed the grid (spatial) dispersion analysis and, further, the temporal-spatial dispersion analysis for explicit direct time integration based on the central difference method. In this contribution, the dispersion surfaces, polar diagrams and error dispersion graphs for bilinear finite element are depicted for different Courant numbers in explicit time integration. Finally, recommendation for setting the mesh size and the time step size for the explicit time integration of discretized equations of motion by the bilinear finite element method is provided.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.