Národní úložiště šedé literatury Nalezeno 3 záznamů.  Hledání trvalo 0.00 vteřin. 
Callibration of capillaries for density measurement of supercooled water
Peukert, Pavel ; Duška, Michal ; Hykl, Jiří ; Sladký, Petr ; Nikl, Zbyněk ; Hrubý, Jan
Density of supercooled water at elevated pressure is interesting because of the strong anomalies which can be explained by existence of a liquid-liquid critical point in the region of supercooled water. In order to provide accurate data for density at these conditions a procedure was developed to calibrate the course of the inner cross section of a capillary along its length. Further, the image analysis for the sub-pixel evaluation of meniscus postion is described.
EXPERIMENTAL APPARATUS FOR MEASUREMENT OF DENSITY OF SUPERCOOLED WATER AT HIGH PRESSURE
Hrubý, Jan ; Hykl, Jiří ; Peukert, Pavel ; Šmíd, Bohuslav
Thermodynamic behavior of supercooled water (metastable fluid water existing transiently below the equilibrium freezing point) at high pressures was subject to many recent theoretical studies. Some of them assume that a second critical point of water exists, related to two liquid phases of supercooled water: the low-density liquid and the high-density liquid. To test these theories, an original experimental cryogenic apparatus is being developed. The volume changes are measured optically in custom-treated fused-silica capillary tubes. The capillaries are placed in a metal vessel designed for pressures up to 200 MPa. The vessel is connected to a circulation thermostat enabling a rapid change of temperature to prevent freezing. A new high-vacuum device was developed for degassing of the ultrapure water sample and filling it into the measuring capillaries. The experiments will contribute to fundamental understanding of the anomalous behavior of water and to applications in meteorology, aerospace engineering, cryobiology etc.
A computationally efficient and accurate numerical representation of thermodynamic properties of steam condensing steam flow in steam turbines
Hrubý, Jan
Mathematical modeling of the non-equilibrium condensing transonic steam flow in the complex 3D geometry of a steam turbine is a demanding problem both concerning the physical concepts and the required computational power. Available accurate formulations of steam properties IAPWS-95 and IAPWS-IF97 require much computation time. For this reason, the modelers often accept the unrealistic ideal-gas behavior. Here we present a computation scheme based on a piecewise, thermodynamically consistent representation of the IAPWS-95 formulation. Density and internal energy are chosen as independent variables to avoid variable transformations and iterations. On the contrary to the previous Tabular Taylor Series Expansion Method, the pressure and temperature are continuous functions of the independent variables, which is a desirable property for the solution of the differential equations of the mass, energy, and momentum conservation for both phases.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.